Answer:
c
Explanation:
the rate of a forward process must be exactly balanced by the rate of the reverse process.
Answer:
The eruption of Mount Tambora eventually reduced the average global temperature by as much as 3 °C.
Explanation:
The Mount Tambora eruption was the largest and most destructive volcanic event in recorded history, expelling as much as 150 cubic km (roughly 36 cubic miles) of ash, pumice, and other rock, and aerosols—including an estimated 60 megatons of sulfur—into the atmosphere. As that material mixed with atmospheric gases, it prevented substantial amounts of sunlight from reaching Earth’s surface, eventually reducing the average global temperature by as much as 3 °C.
Answer: 483 mL of the cleaning solution are used to clean hospital equipment
Explanation:
The question requires us to calculate the volume, in mL, of solution is used to clean hospital equipment, given that 415g of this solution are used and the specific gravity of the solution is 0.860.
Measurements > Density
Specific gravity is defined as the ratio between the density of a given substance to the density of a reference material, such as water:
The density of a substance is defined as the ratio between the mass and the volume of this substance:
Considering the reference substance as water and its density as 1.00 g/mL, we can determine the density of the substance which specific gravity is 0.860:
Thus, taking water as the reference substance, we can say that the density of the cleaning solution is 0.860 g/mL.
Now that we know the density of the cleaning solution (0.860 g/mL) and the mass of solution that is used to clean hospital equipment (415g), we can calculate the volume of solution that is used to clean the equipment:
Therefore, 483 mL of the cleaning solution are used to clean hospital equipment.
Explanation:
32
2H
2
+O
2
→2H
2
O
Molecular mass of H
2
=2 g/mol
Molecular mass of O
2
=32 g/mol
From the balanced chemical equation,
2×2=4 g of hydrogen requires 32 g of Oxygen to react completely
molar mass of methane CH4
= C + 4 H
= 12.0 + 4 x 1.008
= 12.0 + 4.032
= 16.042g/mol
7.31 x 10^25 molecules x <u> 1 mole CH4 </u> = 121.43 moles
6.02 x 10^23 CH4 molecules
121.43 moles CH4 are present.