Answer:
5.5 m/s^2
Explanation:
I believe this is the answer > using the formula a= v-v0/t
Hope this helps!
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
Answer:
d = 44.64 m
Explanation:
Given that,
Net force acting on the car, F = -8750 N
The mass of the car, m = 1250 kg
Initial speed of the car, u = 25 m/s
Final speed, v = 0 (it stops)
The formula for the net force is :
F = ma
a is acceleration of the car
Let d be the breaking distance. It can be calculated using third equation of motion as :
So, the required distance covered by the car is 44.64 m.
Answer:
A
Explanation:
Basically all the other answer are opposites like Exercise is an effective way to relieve stress and lots of Stress does have Negative effects on people