1) In any collision the momentum is conserved
(2*m)*(vo) + (m)*(-2*vo) = (2*m)(v1') + (m)(v2')
candel all the m factors (because they appear in all the terms on both sides of the equation)
2(vo) - 2(vo) = 2(v1') + (v2') => 2(v1') + v(2') = 0 => (v2') = - 2(v1')
2) Elastic collision => conservation of energy
=> [1/2] (2*m) (vo)^2 + [1/2](m)*(2*vo)^2 = [1/2](2*m)(v1')^2 + [1/2](m)(v2')^2
cancel all the 1/2 and m factors =>
2(vo)^2 + 4(vo)^2 = 2(v1')^2 + (v2')^2 =>
4(vo)^2 = 2(v1')^2 + (v2')^2
now replace (v2') = -2(v1')
=> 4(vo)^2 = 2(v1')^2 + [-2(v1')]^2 = 2(v1')^2 + 4(v1')^2 = 6(v1')^2 =>
(v1')^2 = [4/6] (vo)^2 =>
(v1')^2 = [2/3] (vo)^2 =>
(v1') = [√(2/3)]*(vo)
Answer: (v1') = [√(2/3)]*(vo)
Answer:
V= 6.974 m/s
Explanation:
Component( box) weight acting parallel and down roof 88(sin39.0°)=55.4 N
Force of kinetic friction acting parallel and up roof = 18.0 N
Fnet force acting on tool box acting parallel and down roof
Fnet= 55.4 - 18.0
Fnet=37.4 N
acceleration of tool box down roof
a = 37.4(9.81)/88.0
a= 4.169 m/s²
d = 4.90 m
t = √2d/a
t= √2(4.90)/4.169
t= 1.662 s
V = at
V= 4.169(1.662)
V= 6.974 m/s
He should choose the room that’s 15 F.
-5 C = 23 F
Meaning that 15 F is below -5 C and 25 F is not.
Answer: Honestly miss im not sure but i am pretty sure it is The HYDROSPHERE AND THE GEOSPEHER. I figured it out. Pls give me brainlest!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Explanation: