Answer:
It might cave in on itself or collapse because of the change in pressure.
The answer to both is D. Here's why:
For the first, whenever motion changes in a magnetic field, it causes electrons to move. Electricity, which is needed to power a lightbulb, is just a term for movement of these electrons. Electrons aren't created, they're always there in the wire. It's just that the permanent magnet gets them to move, which produces electricity.
For the second, it is very similar to the first. A magnet won't cause any electric current at rest, it always requires motion in order to produce an electric current. If you keep both of those in mind, it should help in the future. Hope this helps!
Answer:
Option b. 0.048 M
Explanation:
We have the molecular weight and the mass, from sulcralfate.
Let's convert the mass in g, to moles
1 g . 1 mol / 2087 g = 4.79×10⁻⁴ moles.
Molarity is mol /L
Let's convert the volume of solution in L
10 mL . 1L/1000 mL = 0.01 L
4.79×10⁻⁴ mol / 0.01 L = 0.048 mol/L
<span>Due to limitations on typography, I will have to describe the equation instead of actually writing it.
Crude appearance.
18 18 0
F --> O + e
9 8 1
Detailed description. Each of the 3 components have both a left superscript and a left subscript which is a superscript and a subscript to the LEFT of the main figure unlike the usual right side that you see subscripts and superscripts.
The equation will be F with an 18 left superscript and a 9 left subscript to represent Florine with atomic weight of 18 and 9 protons.
Followed by a right arrow to indicate the direction the reaction is going.
Followed by the letter O with a left superscript of 18 and a left subscript of 8 to represent Oxygen with atomic weight of 18 and 8 protons.
Followed by a plus sign to indicate more.
Followed by either the lower case letter "e" or the upper case Greek character beta with a left superscript of 0 and a left subscript of 1 or +1 to represent the positron being emitted with a positive charge and an atomic weight of 0.</span>
Answer:
Copper is a metal made up of copper atoms closely packed together. As a result, the electrons can move freely through the metal. For this reason, they are known as free electrons. They are also known as conduction electrons because they help copper be a good conductor of heat and electricity.
Explanation: