Answer:
0.1593 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 600 torr/760 = 0.789 atm, V₁ = 185.0 mL = 0.185 L, T₁ = 25.0°C + 273 = 298.0 K.
P₂ (at STP) = 1.0 atm, V₂ = ??? L, T₂ (at STP = 0.0°C) = 0.0°C + 273 = 273.0 K.
<em>∴ V₂ = P₁V₁T₂/P₂T₁</em> = (0.789 atm)(0.185 mL)(298.0 K)/(1.0 atm)(273.0 K) = <em>0.1593 L.</em>
1) Temperature (heat) of the solution
2) Concentration (amount) of both solvent (usually water) and solute (substance being dissolved by solvent)
3) Movement (kinetic energy) of the solution, as in shaking/stirring
Answer:
a. Ksp = 4s³
b. 5.53 × 10⁴ mol³/dm⁹
Explanation:
a. Obtain an expression for the solubility product of AB2(S),in terms of s.
AB₂ dissociates to give
AB₂ ⇄ A²⁺ + 2B⁻
Since 1 mole of AB₂ gives 1 mole of A and 2 moles of B, we have the mole ratio as
AB₂ ⇄ A²⁺ + 2B⁻
1 : 1 : 2
Since the solubility of AB₂ is s, then the solubility of A is s and that of B is 2s
So, we have
AB₂ ⇄ A²⁺ + 2B⁻
[s] [s] [2s]
So, the solubility product Ksp = [A²⁺][B⁻]²
= (s)(2s)²
= s(4s²)
= 4s³
b. Calculate the Ksp of AB₂, given that solubility is 2.4 × 10³ mol/dm³
Given that the solubility of AB is 2.4 × 10³ mol/dm³ and the solubility product Ksp = [A²⁺][B⁻]² = 4s³ where s = solubility of AB = 2.4 × 10³ mol/dm³
Substituting the value of s into the equation, we have
Ksp = 4s³
= 4(2.4 × 10³ mol/dm³)³
= 4(13.824 × 10³ mol³/dm⁹)
= 55.296 × 10³ mol³/dm⁹
= 5.5296 × 10⁴ mol³/dm⁹
≅ 5.53 × 10⁴ mol³/dm⁹
Ksp = 5.53 × 10⁴ mol³/dm⁹
Answer
The second part of the theory says all atoms of a given element are identical in mass and properties. The third part says compounds are combinations of two or more different types of atoms. The fourth part of the theory states that a chemical reaction is a rearrangement of atoms.
Explanation:
The number of Zn particles (atoms of Zn ) in the first sample, and Zn ions are going to be the same,
Also mass of Zn are going to be the same, because of electrons are too small, and would not have influence on mass.