The answer should be: <span>D. The reaction rate is equal in both directions
In the equilibrium state, the rate of reaction to the right is same as the reaction to the left. Because of this, the concentration of the reactant and product will be kept same.
It might seem like the reaction is stopped because there is no change in the concentration, but it wasn't. Adding a reactant or product will break the equilibrium state.</span>
During normal respiration, about 500ml of air enters and leaves the lungs with each respiratory cycle. This is called the<u> tidal volume</u>.
When a person is relaxed, the normal amount of air such a person breathes in and out is called the tidal volume. It is usually measured in millimeters. For the average adult male, it is 500ml, and the tidal volume of average adult female 400ml.
In order to regulate oxygen intake and expulsion of carbon dioxide, the lungs act as buffers in order to absorb the maximum amount of oxygen possible for respiration and other metabolic functions in the body.
When the tidal volume is above or below the 500ml mark, it could signal the presence of underlying pathological conditions like bronchitis, emphysema and asthma.
To find out more about tidal volume, visit:
brainly.com/question/17439101
#SPJ4
Answer:
High temperature and low pressure
Explanation:
According to the kinetic molecular theory, gases are composed of small particles called molecules which are in constant motion.
At high temperature and low pressure, gas molecules possess high kinetic energy and move at high velocities hence intermolecular interaction is almost none existent and real gases approach the behavior of ideal gases.
Mass is often the most common and weight is its close to that but I'd go with mass
<h3>Answer:</h3>
36 moles of Hydrogen
<h3>Solution:</h3>
The molecular formula of Glucose is,
C₆H₁₂O₆
As clear from molecular formula, each mole of Glucose contains 12 moles of Hydrogen atoms.
Therefore,
1 mole of C₆H₁₂O₆ contains = 12 moles of Hydrogen
So,
3.0 moles of C₆H₁₂O₆ will contain = X moles of Hydrogen
Solving for X,
X = (3.0 mol × 12 mol) ÷ 1 mol
X = 36 moles of Hydrogen