Answer:
<em>50%</em>
Explanation:
Given
Initial power = 200W
Final power = 300W
Increment = 300 - 200 = 100W
percentage increase = increment/initial power * 100
percentage increase = 100/200 * 100%
percentage increase = 0.5 * 100
percentage increase = 50%
<em>Hence the percentage increase in speed is 50%</em>
Answer:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling
Answer:
D
friction acts in the opposite direction of motion but does not affect the motion of the object
Answer:
(A) It will take 22 sec to come in rest
(b) Work done for coming in rest will be 0.2131 J
Explanation:
We have given the player turntable initially rotating at speed of 
Now speed is reduced by 75 %
So final speed 
Time t = 5.5 sec
From first equation of motion we know that '

(a) Now final velocity 
So time t to come in rest 
(b) The work done in coming rest is given by

Fill in the fraction: 3,600/90 = 40; turn it into a unit fraction.
40 mi/min