1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makvit [3.9K]
3 years ago
7

Given the system of equations, what is the solution? x + 2y = 7 x - 2y = -1

Mathematics
1 answer:
Reika [66]3 years ago
4 0
Add the 2 equations to eliminate the 2y. We get

2x = 6

x = 3

Plug x = 3 into the first equation:-

3 + 2y = 7
2y = 7 - 3 = 4

y = 2


Answer is x = 3 and y = 2
You might be interested in
I NEED HELP ASAP Please
Marat540 [252]
Where i put the black lines is where the points should be because there are 5 lines and the 6th one makes a whole number you would multiply 2/3 but 2 and it’ll become 4/6 and that’s why i got it on -1 4/6 and then 5/6 well i have it on there

5 0
3 years ago
For the right triangle find the missing length Round your answer<br> the nearest teren
Talja [164]

Answer:

hello! i can answer in the comments if you tell me what the lengs are and where they are located! i cannot see the picture due to my school computer blocking images on the site so that's why i need the explanation. thanks :>

5 0
3 years ago
Please I need help. I need this ASAP, the screenshot is right below here.
Delicious77 [7]

Answer:

no idea

Step-by-step explanation:

no idea jsbdkanxlanvsksnsp

6 0
3 years ago
Kelly has nine pieces of ribbon. She recorded the length of each piece in the line plot shown.
Ugo [173]

Answer: 44 inches

Step-by-step explanation:

The 3 longest are 14.5 14.5 and 15 so the answer is adding them and 44 is the answer.

6 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • Jessica is at a charity fundraiser and has a chance of receiving a gift. The odds in favor of receiving a gift are 5/12. Find th
    11·1 answer
  • What are the solutions of the equation
    11·1 answer
  • M(3, 4) is the midpoint of mc010-1.jpg The coordinates of S are (4, 1). What are the coordinates of R?
    9·1 answer
  • Which table of ordered pairs represents a proportional relationship?
    15·2 answers
  • 41. What is the image of O(- 3, - 2) after two reflections, first across the line y = - 5 , then across the line x = 1 ? (1 poin
    9·1 answer
  • Need help asap plzz
    5·1 answer
  • Hurry please also idk y brainly is making me type 20 characters
    6·2 answers
  • Please help I don't have much time left
    5·2 answers
  • Determine another point on the line given two points on the line. (-2, 9), (2, -1)
    6·1 answer
  • Hree students were working on 630,000÷700 in math class.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!