Answer:
7 m/s^2
Explanation:
Given that the jet is traveling 37.6 m/s when the pilot receives the message.
And it takes the pilot 5.37 s to bring the plane to a halt.
Acceleration of the plane can be calculated by using first equation of motion
V = U - at
Since the plane is going to stop, the final velocity V = zero.
And the acceleration will be negative
Substitute all the parameters into the formula
0 = 37.6 - 5.37a
5.37a = 37.6
Make a the subject of formula
a = 37.6 / 5.37
a = 7.0 m/s^2
Therefore, the acceleration of the plane to bring the plane to a halt is 7 m/s^2
Answer:
exponential
Explanation:
type of function that describes the amplitude of damped oscillatory motion is exponential because as we know that here function is
y = A ×
× cos(ωt + ∅ ) ..................................... ( 1 )
here function A ×
is amplitude
as per equation ( 1 )it is exponential
so that we can say that amplitude of damped oscillatory motion is exponential
Answer:
The new frequency (F₂ ) will be related to the old frequency by a factor of one (1)
Explanation:
Fundamental frequency = wave velocity/2L
where;
L is the length of the stretched rubber
Wave velocity = 
Frequency (F₁) = 
To obtain the new frequency with respect to the old frequency, we consider the conditions stated in the question.
Given:
L₂ =2L₁ = 2L
T₂ = 2T₁ = 2T
(M/L)₂ = 0.5(M/L)₁ = 0.5(M/L)
F₂ = ![\frac{\sqrt{\frac{2T}{0.5(\frac{M}{L})}}}{4*L} = \frac{\sqrt{4(\frac{T}{\frac{M}{L}}})}{4*L} = \frac{2}{2} [\frac{\sqrt{\frac{T}{\frac{M}{L}}}}{2*L}] = F_1](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B%5Cfrac%7B2T%7D%7B0.5%28%5Cfrac%7BM%7D%7BL%7D%29%7D%7D%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B4%28%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%29%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B2%7D%7B2%7D%20%5B%5Cfrac%7B%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%7D%7B2%2AL%7D%5D%20%3D%20F_1)
Therefore, the new frequency (F₂ ) will be related to the old frequency by a factor of one (1).
Answer:
680 J
Explanation:
Mechanical energy = potential energy + kinetic energy
ME = PE + KE
ME = mgh + ½ mv²
ME = (77.1 kg) (9.8 m/s²) (0.90 m) + ½ (77.1 kg) (0 m/s)²
ME = 680 J