Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.
Answer: Formula for Acceleration Due to Gravity
These two laws lead to the most useful form of the formula for calculating acceleration due to gravity: g = G*M/R^2, where g is the acceleration due to gravity, G is the universal gravitational constant, M is mass, and R is distance.please mark as brainliest
Explanation:
Answer:If kinetic energy increases, so does the thermal energy, and vice versa.
Please brainliest!
Answer:
Explanation:
Here's what we know because it was given to us:
a = -9.8 m/s/s and
time = 3.32 seconds
Here's what we know because we rock physics:
v₀ = 0 (because the object was held still before it was dropped).
Here's the equation that ties all that info together in a single one-dimensional equation:
v = v₀ + at
Filling in and solving for v:
v = 0 + (-9.8)(3.32) and
v = -33m/s
The velocity is negative because the object is moving downwards and up is positive (but you knew that already too!)