1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vesna_86 [32]
3 years ago
10

Explain briefly why metals are good conductors of electric current

Physics
2 answers:
Mice21 [21]3 years ago
7 0
The free electrons in metals can move through the metal, all while receiving and losing electrons, allowing metals to conduct electricity. Example: copper is a great conductor of electric current.
harina [27]3 years ago
7 0
Hello!

Just briefly, Metals are good conductors of electricity because of electrons moving freely in metals and metals like to give up electrons making them a great conductor of electricity.

Hope this helps! Thank you!!
You might be interested in
Which of the following are true? Select all that apply. The net electric field at any location inside a block of copper is zero
Agata [3.3K]

Answer:

1) The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.

2) In equilibrium, there is no net flow of mobile charged particles inside a conductor.

3) If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.

Explanation:

1) and 3) A block of copper is a conductor. The charged particles on a conductor in equilibrium are at rest, so the intensity of the electric field at all interior points of the conductor is zero, otherwise, the charges would move resulting in an electric current.

2) The charged particles on a conductor in equilibrium are at rest.

6 0
3 years ago
HELP!! ALL MY POINTS WILL BE GIVEN
Marta_Voda [28]

Answer:

-6 m/s^2

Explanation:

30 - 90 = -60

-60 / 10 = -6

If acceleration was constant, it will be -6 m/s^2

5 0
2 years ago
Read 2 more answers
Imagine that Kevin can instantly transport himself between Planet X and Planet Y. Which statement could be said about Kevin in t
Over [174]
What are the choices ? 

Without some directed choices, I'm, free to make up any
reasonable statement that could be said about Kevin in this
situation.  A few of them might be . . .

-- Kevin will have no trouble getting back in time for dinner.

-- Kevin will have no time to enjoy the scenery along the way.

-- Some simple Physics shows us that Kevin is out of his mind.
He can't really do that.

           -- Speed = (distance covered) / (time to cover the distance) .

If time to cover the distance is zero, then speed is huge (infinite).

           -- Kinetic energy = (1/2) (mass) (speed)² .

If speed is huge (infinite), then kinetic energy is huge squared (even more).
There is not enough energy in the galaxy to push Kevin to that kind of speed.

         -- Mass = (Kevin's rest-mass) / √(1 - v²/c²)

-- As soon as Kevin reaches light-speed, his mass becomes infinite.
-- It takes an infinite amount of energy to push him any faster.
-- If he succeeds somehow, his mass becomes imaginary.
-- At that point, he might as well turn around and go home ...
     if he ever reached Planet-Y, nobody could see him anyway.
8 0
3 years ago
Read 2 more answers
Which gas giant has a rotation axis so tilted that the planet rotated like a bowling ball as it orbits the sun?
Anestetic [448]
The answer to your question is OPTION B
3 0
3 years ago
What is the deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h? (such deceleration caused on
Wewaii [24]

The deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h is  252.52\ m/s^2.

The acceleration in opposite direction is known as the deceleration. Basically the deceleration is negative value of the acceleration since the negative sign depicts its opposite in direction.

The given data:

time, t = 1.1 s

initial speed, u = 1000 km/h = \frac{2500}{9}\ m/s

final speed, v = 0 m/s

So we will be using the equation of motion, that is,

v = u + at

\therefore 0=\frac{2500}{9} + a(1.1)

\Rightarrow a=-\frac{2500}{9(1.1)}

\therefore a = - 252.52 \ m/s^2

Hence , the deceleration of the rocket is  252.52\ m/s^2.

To learn more about Attention here:

brainly.com/question/28500124

#SPJ4

6 0
1 year ago
Other questions:
  • The term "accuracy" best refers to which of the following?
    13·2 answers
  • The average distance between the Sun and a certain planet is approximately 2.3 x 1014 inches. Which of the following is closest
    14·1 answer
  • A particle with charge 8 µC is located on the x-axis at the point −10 cm , and a second particle with charge 3 µC is placed on t
    12·1 answer
  • explain how average speed and average velocity are related to each other for an object in uniform motion
    7·2 answers
  • How much energy does a 100 W light bulb use in 24 hours?? Show all your work....
    7·1 answer
  • Which fundamental force causes some forms of radioactivity? A. Gravity B. Electromagnetic force C. Strong nuclear force D. Weak
    14·1 answer
  • Rate of work done against water resistant? Can someone explain why its 3.0W? Thanks.
    11·1 answer
  • Estimate the average power of a water wave when it hits the chest of an adult standing in the water at the seashore. Assume that
    12·1 answer
  • Which of the following statements correctly describe the various applications listed above?
    15·1 answer
  • How did the discovery of eris force astronomers to reconsider the definition of planet?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!