First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min
Answer:
148.04 kJ/mol
Explanation:
Let's consider the following thermochemical equation.
NO(g) + 1/2 O₂(g) → NO₂(g) ΔH°rxn = -114.14 kJ/mol
We can find the standard enthalpy of formation (ΔH°f) of NO(g) using the following expression.
ΔH°rxn = 1 mol × ΔH°f(NO₂(g)) - 1 mol × ΔH°f(NO(g)) - 1/2 mol × ΔH°f(O₂(g))
ΔH°f(NO(g)) = 1 mol × ΔH°f(NO₂(g)) - ΔH°rxn - 1/2 mol × ΔH°f(O₂(g)) / 1 mol
ΔH°f(NO(g)) = 1 mol × 33.90 kJ/mol - (-114.14 kJ) - 1/2 mol × 0 kJ/mol / 1 mol
ΔH°f(NO(g)) = 148.04 kJ/mol
<span>Pass the mixture through filter paper. The large particles in the suspension will filter out. to tell the difference between a solution and a colloid, shine a beam of light through the mixture, if it reflects then it is a colloid, if it doesn't then it is a solution</span>
Answer:
THE NEW PRESSURE OF THE HELIUM GAS AT 2.98 L VOLUME IS 124.8 kPa.
AT AN INCREASE ALTITUDE, THERE IS A LOWER PRESSURE ENVIRONMENT AND THE HELIUM GAS PRESSURE DECREASES AND HENCE AN INCREASE IN VOLUME.
Explanation:
The question above follows Boyle's law of the gas law as the temperature is kept constant.
Boyle's law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Mathematically, P1 V1 = P2 V2
P1 = 150 kPa = 150 *10^3 Pa
V1 = 2.48 L
V2 = 2.98 L
P2 = ?
Rearranging the equation, we obtain;
P2 = P1 V1 / V2
P2 = 150 kPa * 2.48 / 2.98
P2 = 372 *10 ^3 / 2.98
P2 = 124.8 kPa.
The new pressure of the gas when at a height which increases the volume of the helium gas to 2.98 L is 124.8 kPa.
Boiling points are a measure of intermolecular forces. The intermolecular forces increase with increasing polarization of bonds. Boiling point increases with molecular weight, and with surface area.