Polar molecules exhibit an unequal balance of charges between the individual elements of the compound. This is brought about by the large difference in their electronegativities. The H atom has the least amount of electronegativity. Then, it is a known periodic trend, that as you go downwards in a group, electronegativity decreases, and increase as you go from left to right. Thus, you can deduce that the most electronegative elements are found in the upper right corner which includes O, N and F atoms. Any bond created between Hydrogen and any of O, N and F atoms is a polar bond.
The reaction has had a heat that is enthalpy of -22 kJ/mol. The exothermic process has been signaled by the negative sign.
The amount of energy that the system absorbs or releases to create the products is described as the heat of reaction.
The source of the reaction's heat is
H is equal to 3(413 Kj/mol) + 358 Kj/mol + 467 Kj/mol + 1070 Kj/mol = 3134 Kj/mol.
H prod equals 3(413 kj/mol) plus 347 kj/mol plus 358 kj/mol plus 467 kj/mol plus 745 kj/mol, or 3156 kj/mol.
H=3134 kj/mol - 3156 kj/mol = -22 Kj/mol
Negative findings point to an exothermic response.
A chemical process known as an exothermic reaction releases energy in the form of heat or light.
Learn more about exothermic reaction here-
brainly.com/question/10373907
#SPJ4
Answer:
Explanation:
The usefulness of a buffer is its ability to resist changes in pH when small quantities of base or acid are added to it. This ability is the consequence of having both the conjugate base and the weak acid present in solution which will consume the added base or acid.
This capacity is lost if the ratio of the concentration of conjugate base to the concentration of weak acid differ by an order of magnitude. Since buffers having ratios differing by more will have their pH driven by either the weak acid or its conjugate base .
From the Henderson-Hasselbach equation we have that
pH = pKa + log [A⁻]/[HA]
thus
0.1 ≤ [A⁻]/[HA] ≤ 10
Therefore the log of this range is -1 to 1, and the pH will have a useful range of within +/- 1 the pKa of the buffer.
Now we are equipped to answer our question:
pH range = 3.9 +/- 1 = 2.9 through 4.9
Answer:
Conduct more trials
Explanation:
Theoretical Probability can be defined as what someone is expecting to happen
Experimental Probability on the other hand, is defined as what actually happens.
Probability is usually calculated in the same way for experimental probability and that of theoretical probability. You divide the total number of possible ways in which a particular outcome can happen, by the total number of outcomes itself.
In Experimental probability, the more times a probability is tried, it gets closer and even more closer to theoretical probability.
So, for the question, Jamie should improve the number of tries more, so as to get his experimental probability results to be closer to the theoretical probability result.