The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
There are 3 equations involved in manufacturing Nitric Acid from Ammonia.
First the ammonia is oxidized:
4NH3 + 5O2 = 4NO + 6H2O
Then for the absorption of the nitrogen oxides.
2NO + O2 = N2O4
Lastly, the N2O4 is further oxidized into Nitric acid.
3N2O4 + 2H2O = 4HNO3 + 2NO
Then run stoichiometry through these equations.
The first equation produces roughly 271,722,938 grams of NO
The second equation produces roughly 416,606,944 grams of N2O4
The last equation produces roughly 380,412,294 grams of HNO3 (nitric acid)
Convert the exact number back into tons, and your answer is: 419.332775 tons.
Rounded, I'm going to say that's 419.33 tons.
Hope this helps! :)
Also, it seems that commercially, Nitric Acid is commonly made by bubbling NO2 into water, rather than using ammonia.
Explanation:
Deliquescent substances are solids that absorb moisture from the atmosphere until they dissolve in the absorbed water and form solutions. Efflorescent: Efflorescent substances are solids that can undergo spontaneous loss of water from hydrated salts.
Count up the number of electrons in each orbital. theres ten electrons which means it has 10 protons. the element would be neon