First, we determine that the given equation in this item
is a linear equation. Thus, it should be a straight line. With this, we are
left with the third and fourth choice. Then, we substitute the given data
points to the equation and see if the points satisfy the given.
Choice 3:
<span> (1,3) :
(-5)(1) + (2)(3) = 1 TRUE</span>
<span> (3,8) :
(-5)(3) + 2(8) = 1 TRUE</span>
<span> (-3,-7)
: (-5)(-3) + (2)(-7) = 1 TRUE</span>
Choice 4:
<span> (4,-3) :
(-5)(4) + (2)(-3) ≠ 1 FALSE</span>
<span> (-1,2) : (-5)(-1) + (2)(2) ≠ 1 FALSE</span>
<span> (-4,5) : (-5)(-4) + (2)(5) ≠ 1 FALSE</span>
<span>Thus, the answer is the third choice.</span>
It is 2.56 because per pound equals the amount
Answer:
super simple its blueprints!
Step-by-step explanation:
Answer
When you subtract a negative number, it is the same as addition.
Therefore if you subtract a negative number from a positive number, the result will be positive.
9-(-2)=11
brainliest?
For this case we must simplify the following expression:
![\sqrt [3] {\frac {12x ^ 2} {16y}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B%5Cfrac%20%7B12x%20%5E%202%7D%20%7B16y%7D%7D)
We rewrite the expression as:
![\sqrt[3]{\frac{4(3x^2)}{4(4y)}}=\\\sqrt[3]{\frac{4(3x^2)}{4(4y)}}=\\\frac{\sqrt[3]{3x^2}}{\sqrt[3]{4y}}=](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B4%283x%5E2%29%7D%7B4%284y%29%7D%7D%3D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B4%283x%5E2%29%7D%7B4%284y%29%7D%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B4y%7D%7D%3D)
We multiply the numerator and denominator by:
![(\sqrt[3]{4y})^2:\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{\sqrt[3]{4y}*(\sqrt[3]{4y})^2}=](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%3A%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B%5Csqrt%5B3%5D%7B4y%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%3D)
We use the rule of power
in the denominator:
![\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{(\sqrt[3]{4y})^3}=\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B%28%5Csqrt%5B3%5D%7B4y%7D%29%5E3%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B4y%7D%3D)
Move the exponent within the radical:
![\frac{\sqrt[3]{3x^2}*(\sqrt[3]{16y^2}}{4y}=\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{2^3*(2y^2)}}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B16y%5E2%7D%7D%7B4y%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B2%5E3%2A%282y%5E2%29%7D%7D%7B4y%7D%3D)
![\frac{2\sqrt[3]{3x^2}*(\sqrt[3]{(2y^2)}}{4y}=\\\frac{2\sqrt[3]{6x^2*y^2}}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B2%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B%282y%5E2%29%7D%7D%7B4y%7D%3D%5C%5C%5Cfrac%7B2%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B4y%7D%3D)
![\frac{\sqrt[3]{6x^2*y^2}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B2y%7D)
Answer:
![\frac{\sqrt[3]{6x^2*y^2}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B2y%7D)