Answer: D)supersaturated
Explanation: Solubility is defined as the amount of solute in grams which can dissolve in 100 g of the liquid to form a saturated solution at that particular temperature.
At
, the solubility of
is 153g/100 ml.
Thus if 180 grams is dissolved, it contains more amount of solute than it can hold at that that temperature, and thus is supersaturated solution.
A saturated solution is a solution containing the maximum concentration of a solute dissolved in the solvent. The additional solute does not dissolve in a saturated solution.
An unsaturated solution is solution in which the solute concentration is lower than its equilibrium solubility.
A supersaturated solution is one that has more solute than it can hold at a certain temperature.
<span>The bright, visible surface of the Sun is called corona. The outermost layer of the Sun's atmosphere is called chromosphere.</span>
Answer:

Explanation:
m = Mass of object = 
mg = Weight of object = 20 N
g = Acceleration due to gravity = 
v = Final velocity = 15 m/s
u = Initial velocity = 0
d = Distance moved by the object = 150 m
= Angle of slope = 
f = Force of friction
fd = Work done against friction
The force balance of the system is

The work done against friction is
.
Isotopes of an element will contain the same number of protons and electrons but will differ in the number of neutrons they contain. In other words, isotopes have the same atomic number because they are the same element but have a different atomic mass because they contain a different number of neutrons
Answer:
The drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
Explanation:
We can find the drift speed by using the following equation:
Where:
I: is the current = 4.50 A
n: is the number of electrons
q: is the modulus of the electron's charge = 1.6x10⁻¹⁹ C
A: is the cross-sectional area = 2.20x10⁻⁶ m²
We need to find the number of electrons:
Now, we can find the drift speed:
Therefore, the drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
I hope it helps you!