1.)
Velocity is in m/s, and acceleration is in m/s^2 like you said. Because of this, we can calculate this by dividing the speed by the time it took to get to that speed.
(20 meters/second) / 10 seconds = 2 meters/ second^2
2.)
Same thing with the first one.
(100 meters/second) / 4 seconds = 25 meters / seconds^2
<span>Since Florence is east, then Florence is 5 miles due west of Paris (30-25). Then, using the Pythagorean theorem with 45 miles as the length and 5 miles as the width, the square root of (45^2+5^2) is 45.277 miles.</span>
Answer:
The force exerted is 318.86 N
Explanation:
The force exerted by such a stream is calculated by multiplying the mass flow rate of water by the velocity of the stream of water.
mass flow rate = 21.4 kg/s
velocity = 14.9 m/s
Force exerted = 21.4 kg/s × 14.9 m/s = 318.86 kgm/s^2 = 318.86 N
The capacitive reactance is reduced by a factor of 2.
<h3>Calculation:</h3>
We know the capacitive reactance is given as,

where,
= capacitive reactance
f = frequency
C = capacitance
It is given that frequency is doubled, i.e.,
f' = 2f
To find,
=?




Therefore, the capacitive reactance is reduced by a factor of 2.
I understand the question you are looking for is this:
A capacitor is connected across an AC source. Suppose the frequency of the source is doubled. What happens to the capacitive reactant of the inductor?
- The capacitive reactance is doubled.
- The capacitive reactance is traduced by a factor of 4.
- The capacitive reactance remains constant.
- The capacitive reactance is quadrupled.
- The capacitive reactance is reduced by a factor of 2.
Learn more about capacitive reactance here:
brainly.com/question/23427243
#SPJ4