Unchanged because ALL objects fall at 9.8m/s^2. Yes, all
D) a car speeding up may i have brainliest hope this help
The position of the object at time t =2.0 s is <u>6.4 m.</u>
Velocity vₓ of a body is the rate at which the position x of the object changes with time.
Therefore,

Write an equation for x.

Substitute the equation for vₓ =2t² in the integral.

Here, the constant of integration is C and it is determined by applying initial conditions.
When t =0, x = 1. 1m

Substitute 2.0s for t.

The position of the particle at t =2.0 s is <u>6.4m</u>
The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
The distance of the telescope from the Earth's center is

, the gravitational force is

and the mass of the Earth is

, therefore we can rearrange the previous equation to find m2, the mass of the telescope:
Given that,
Frequency emitted by the bat, f = 47.6 kHz
The speed off sound in air, v = 413 m/s
We need to find the wavelength detected by the bat. The speed of a wave is given by formula as follows :

or

So, the bat can detect small objects such as an insect whose size is approximately equal to the wavelength of the sound the bat makes i.e. 8.67 mm.