Answer:
Because boys are overrated
Explanation:
Answer:
a. Minimum 1.70 V
b. There is no maximum.
Explanation:
We can solve this question by remembering that the cell potential is given by the formula
ε⁰ cell = ε⁰ reduction - ε⁰ oxidation
Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the oxidized species 0.80 V, thus
ε⁰ reduction - ε⁰ oxidation ≥ ε⁰ cell
Since ε⁰ oxidation is by definition the negative of ε⁰ reduction , we have
ε⁰ reduction - ( 0.80 V ) ≥ 0.90 V
⇒ ε⁰ reduction ≥ 1.70 V
Therefore,
(a) The minimum standard reduction potential is 1.70 V
(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V
<span>M(NO3)2 ==> [M2+] + 2 [NO3-]
0.202 M ==> 0.202 M
M(OH)2 ==> [M2+] + 2[OH-]
5.05*10^-18 ===> s + [2s]^2
5.05*10^-18 ===> 0.202 + [2s]^2
5.05*10^-18 = 0.202 * 4s^2
4s^2 = 25*10^-18
s^2 = 6.25*10^-18
s = 2.5*10^-9
So, the solubility is 2.5*10^-9</span>