Answers:
8.70 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 32.00 44.01
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 18H₂O
m/g: 9.88
(a) Calculate the <em>moles of O₂
</em>
n = 9.88 g O₂ ×1 mol O₂ /32.00 g O₂
n = 0.3088 mol O₂
(b) Calculate the <em>moles of CO₂</em>
The molar ratio is (16 mol CO₂/25 mol O₂)
n = 0.3088 mol O₂ × (16 mol CO₂/25 mol O₂)
n = 0.1976 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
Mass of CO₂ = 0.1976 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
Mass of CO₂ = 8.70 g CO₂
Answer:
1. Which statement correctly describes the classification of chemical reactions into different categories?
-Not all reactions fit into a category, and some reactions can fit into more than one category.
2. In a synthesis reaction, two atoms of sodium (Na) combine with one molecule of chlorine gas (Cl2) to produce sodium chloride (NaCl). How many molecules of sodium chloride are produced?
-Two
3. In the decomposition of water, why is twice as much hydrogen as oxygen formed?
- There are two atoms of hydrogen and one atom of oxygen in a water molecule.
4. Which component is transferred between substances in an oxygen-reduction reaction?
-Electrons
5. In a chemical reaction, substance A transfers electrons to substance B. Which statement is correct?
-Substance B is reduced and acts as the oxidizing agent.
Answer:it takes about a day
Explanation:
Answer:
![[A]_0=0.400M](https://tex.z-dn.net/?f=%5BA%5D_0%3D0.400M)
Explanation:
Hello.
In this case, since the first-order reaction is said to be linearly related to the rate of reaction:
![r=-k[A]](https://tex.z-dn.net/?f=r%3D-k%5BA%5D)
Whereas [A] is the concentration of hydrogen peroxide, when writing it as a differential equation we have:
![\frac{d[A]}{dt} =-k[A]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3D-k%5BA%5D)
Which integrated is:
![ln(\frac{[A]}{[A]_0} )=-kt](https://tex.z-dn.net/?f=ln%28%5Cfrac%7B%5BA%5D%7D%7B%5BA%5D_0%7D%20%29%3D-kt)
And we can calculate the initial concentration of the hydrogen peroxide as follows:
![[A]_0=\frac{[A]}{exp(-kt)}](https://tex.z-dn.net/?f=%5BA%5D_0%3D%5Cfrac%7B%5BA%5D%7D%7Bexp%28-kt%29%7D)
Thus, for the given data, we obtain:
![[A]_0=\frac{0.321M}{exp(-2.54x10^{-4}s^{-1}*855s)}](https://tex.z-dn.net/?f=%5BA%5D_0%3D%5Cfrac%7B0.321M%7D%7Bexp%28-2.54x10%5E%7B-4%7Ds%5E%7B-1%7D%2A855s%29%7D)
![[A]_0=0.400M](https://tex.z-dn.net/?f=%5BA%5D_0%3D0.400M)
Best regards!
Answer:
5.56 × 10^23 molecules
Explanation:
The number of molecules in a molecule can be calculated by multiplying the number of moles in that molecule by Avagadro's number (6.02 × 10^23)
Using mole = mass/molar mass
Molar mass of N2O4 = 14(2) + 16(4)
= 28 + 64
= 92g/mol
mole = 85.0/92
= 0.9239
= 0.924mol
number of molecules of N2O4 (nA) = 0.924 × 6.02 × 10^23
= 5.56 × 10^23 molecules