Answer is: 10 moles of water will be produced.
Balanced chemical reaction of formation of water:
2H₂ + O₂ → 2H₂O.
n(H₂) = 10 mol; amount of hydrogen gas.
From balanced chemical reaction: n(H₂) : n(H₂O) = 2 : 2 (1 : 1).
n(H₂O) = n(H₂).
n(H₂O) = 10 mol; amount of water.
Fertile offspring mate is a form of reproduction
Answer:
1) 2.054 x 10⁻⁴ mol/L.
2) Decreasing the temperature will increase the solubilty of O₂ gas in water.
Explanation:
1) The solubility of O₂ gas in water:
- We cam calculate the solubility of O₂ in water using Henry's law: <em>Cgas = K P</em>,
- where, Cgas is the solubility if gas,
- K is henry's law constant (K for O₂ at 25 ̊C is 1.3 x 10⁻³ mol/l atm),
- P is the partial pressure of O₂ (P = 120 torr / 760 = 0.158 atm).
- Cgas = K P = (1.3 x 10⁻³ mol/l atm) (0.158 atm) = 2.054 x 10⁻⁴ mol/L.
2) The effect of decreasing temperature on the solubility O₂ gas in water:
- Decreasing the temperature will increase the solubilty of O₂ gas in water.
- When the temperature increases, the solubility of O₂ gas in water will decrease because the increase in T will increase the kinetic energy of gas particles and increase its motion that will break intermolecular bonds and escape from solution.
- Decreasing the temperature will increase the solubility of O₂ gas in water will because the kinetic energy of gas particles will decrease and limit its motion that can not break the intermolecular bonds and increase the solubility of O₂ gas.
Gravity increases as the mass of either object increases.
<h3>What is gravity?</h3>
Gravity is the force by which a planet or other body draws objects toward its centre. The force of gravity keeps all of the planets in orbit around the sun.
Since the gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases.
Learn more about the gravity here:
brainly.com/question/4014727
#SPJ1