Answer: option 1 : the electric potential will decrease with an increase in y
Explanation: The electric potential (V) is related to distance (in this case y) by the formulae below
V = kq/y
Where k = 1/4πε0
Where V = electric potential,
k = electric constant = 9×10^9,
y = distance of potential relative to a reference point, ε0 = permittivity of free space
q = magnitude of electronic charge = 1.609×10^-19 c
From the formulae, we can see that q and k are constants, only potential (V) and distance (y) are variables.
We have that
V = k/y
We see the potential(V) is inversely proportional to distance (y).
This implies that an increase in distance results to a decreasing potential and a decrease in distance results to an increase in potential.
This fact makes option 1 the correct answer
Hello there,
The magnetic field around a straight<span> wire consists of </span>concentric <span>circles
</span>
Hope this helps :))
~Top
The power required is 30 Watt.
Let us recall that power is defined as the rate of doing work. Hence, we can write as follows;
Power = Work done/ time taken
Now;
work done = Force × distance
Force = 30.0 N
Distance = 10.0 m
work done = 30.0 N × 10.0 m = 300 J
The power expended = 300 J/10.00 s = 30 Watt
Learn more: brainly.com/question/64224
You could increase the mechanical efficiency of this screw by reducing friction along the screw threads