Answer:
T = 4.905[N]
Explanation:
In order to solve this problem we must perform a sum of forces on the vertical axis.
∑Fy = 0
We have two forces acting only, the weight of the body down and the tension force T up, as the body does not move we can say that it is system is in static equilibrium, therefore the sum of forces is equal to zero.
![T-m*g=0\\T=0.5*9.81\\T=4.905[N]](https://tex.z-dn.net/?f=T-m%2Ag%3D0%5C%5CT%3D0.5%2A9.81%5C%5CT%3D4.905%5BN%5D)
Answer:
4462.0927 W
Explanation:
= Emissivity of the panel = 1
= Stefan-Boltzmann constant = 
T = Temperature = (273.15+6)
Area of the panel is given by

The power radiated is given by

The power radiated from each panel is 4462.0927 W
C because it’s not a or B so 50/50 c or d and d is def not the answer so c
Answer:
Energy = 7.83 x 10⁻¹⁹ J
Energy = 6.63 x 10⁻¹⁹ J
Explanation:
The energy of a photon in terms of wavelength can be calculated by the following formula:

where,
h = Plank's Constant = 6.63 x 10⁻³⁴ Js
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light
Now, for λ = 254 nm = 2.54 x 10⁻⁷ m:

<u>Energy = 7.83 x 10⁻¹⁹ J</u>
<u></u>
Now, for λ = 300 nm = 3 x 10⁻⁷ m:

<u>Energy = 6.63 x 10⁻¹⁹ J</u>