Answer:
a) 20s
b) 500m
Explanation:
Given the initial velocity = 100 m/s, acceleration = -10m/s^2 (since it is moving up, acceleration is negative), and at the maximum height, the ball is not moving so final velocity = 0 m/s.
To find time, we apply the UARM formula:
v final = (a x t) + v initial
Replacing the values gives us:
0 = (-10 x t) + 100
-100 = -10t
t = 10s
It takes 10s for the the ball to reach its max height, but it must also go down so it takes 2 trips, once going up and then another one going down, both of which take the same time to occur
So 10s going up and another 10s going down:
10x2 = 20s
b) Now that we have v final = 0, v initial = 100, a = -10, t = 10s (10s because maximum displacement means the displacement from the ground to the max height) we can easily find the displacement by applying the second formula of UARM:
Δy = (1/2)(a)(t^2) + (v initial)(t)
Replacing the values gives us:
Δy = (1/2)(-10)(10^2) + (100)(10)
= (-5)(100) + 1000
= -500 + 1000
= 500 m
Hope this helps, brainliest would be appreciated :)
Answer:
(a) the force is 8.876 N
(b) the magnitude of each charge is 4.085 μC
Explanation:
Part (a)
Given;
coulomb's constant, K = 8.99 x 10⁹ N.m²/C²
distance between two charges, r = 10 cm = 0.1 m
force between the two charges, F = 15 N
when the distance between the charges changes to 13 cm (0.13 m)
force between the two charges, F = ?
Apply Coulomb's law;

Part (b)
the magnitude of each charge, if they have equal magnitude

where;
F is the force between the charges
K is Coulomb's constant
Q is the charge
r is the distance between the charges

Incomplete Question.The Complete question is
The Earth spins on its axis and also orbits around the Sun. For this problem use the following constants. Mass of the Earth: 5.97 × 10^24 kg (assume a uniform mass distribution) Radius of the Earth: 6371 km Distance of Earth from Sun: 149,600,000 km
(i)Calculate the rotational kinetic energy of the Earth due to rotation about its axis, in joules.
(ii)What is the rotational kinetic energy of the Earth due to its orbit around the Sun, in joules?
Answer:
(i) KE= 2.56e29 J
(ii) KE= 2.65e33 J
Explanation:
i) Treating the Earth as a solid sphere, its moment of inertia about its axis is
I = (2/5)mr² = (2/5) * 5.97e24kg * (6.371e6m)²
I = 9.69e37 kg·m²
About its axis,
ω = 2π rads/day * 1day/24h * 1h/3600s
ω= 7.27e-5 rad/s,
so its rotational kinetic energy
KE = ½Iω² = ½ * 9.69e37kg·m² * (7.27e-5rad/s)²
KE= 2.56e29 J
(ii) About the sun,
I = mR²
I= 5.97e24kg * (1.496e11m)²
I= 1.336e47 kg·m²
and the angular velocity
ω = 2π rad/yr * 1yr/365.25day * 1day/24h * 1h/3600s
ω= 1.99e-7 rad/s
so
KE = ½ * 1.336e47kg·m² * (1.99e-7rad/s)²
KE= 2.65e33 J
Answer:
12.7m/s
Explanation:
Given parameters:
Mass of diver = 77kg
Height of jump = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we apply the motion equation below:
v² = u² + 2gH
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
H is the height
Now insert the parameters and solve;
v² = 0² + 2 x 9.8 x 8.18
v = 12.7m/s
Answer:
Explanation:
For resistance of a wire , the formula is as follows .
R = ρ L/S
where ρ is specific resistance , L is length and S is cross sectional area of wire .
for first wire resistance
R₁ = ρ 3L/3a = ρ L/a
for second wire , resistance
R₂ = ρ 3L/6a
= .5 ρ L/a
For 3 rd wire resistance
R₃ = ρ 6L/3a
= 2ρ L/a
For fourth wire , resistance
R₄ = ρ 6L/6a
= ρ L/a
So the smallest resistance is of second wire .
Its resistance is .5 ρ L/a