Whyyyyyyyyyyywhyyyyyyyyyyywhyyyyyyy
Answer:
A)
- Q ( kw ) for vapor = -1258.05 kw
- Q ( kw ) for liquid = -1146.3 kw
B )
- Q ( kj ) for vapor = -1258.05 kJ
- Q ( KJ ) for liquid = - 1146.3 KJ
Explanation:
Given data :
45.00 % mole of methane
55.00 % of ethane
attached below is a detailed solution
A) calculate - Q(kw)
- Q ( kw ) for vapor = -1258.05 kw
- Q ( kw ) for liquid = -1146.3 kw
B ) calculate - Q ( KJ )
- Q ( kj ) for vapor = -1258.05 kJ
- Q ( KJ ) for liquid = - 1146.3 KJ
since combustion takes place in a constant-volume batch reactor
Chile is the razor thin country you're talking about.
Why? Because Chile accounts more than half of the western coastline of South America.
Why again you ask? Well that's easy. Chile stands with a palatable coastline of about 2,600 miles.
Answer:
-Differential equation: d²T/dx² = 0
-The boundary conditions are;
1) Heat flux at bottom;
-KAdT(0)/dx = ηq_e
2) Heat flux at top surface;
-KdT(L)/dx = h(T(L) - T(water))
Explanation:
To solve this question, let's work with the following assumptions that we are given;
- Heat transfer is steady and one dimensional
- Thermal conductivity is constant.
- No heat generation exists in the medium
- The top surface which is at x = L will be subjected to convection while the bottom surface which is at x = 0 will be subjected to uniform heat flux.
Will all those assumptions given, the differential equation can be expressed as; d²T/dx² = 0
Now the boundary conditions are;
1) Heat flux at bottom;
q(at x = 0) is;
-KAdT(0)/dx = ηq_e
2) Heat flux at top surface;
q(at x = L):
-KdT(L)/dx = h(T(L) - T(water))