For conservation of energy we have to:
mgH=mv²/2
Clearing
<span> v=sqrt(2gH)
Then, by definition
</span><span> F=Δp/Δt= Δ(mv)/ Δt=m Δ(v)/Δt=
</span> =m[sqrt(2gH)-0]/Δt= m[sqrt(2gH)]/ Δt
the answer is
F=m[sqrt(2gH)]/ Δt
Answer:
The velocity of the particle from T = 0 s to T = 4 s is;
0.5 m/s
Explanation:
The given parameters from the graph are;
The initial displacement (covered) at time, t₁ = 0 s is x₁ = 1 m
The displacement covered at time, t₂ = 4 s is x₂ = 3 m
The graph of distance to time, from time t = 0 to time t = 4 is a straight line graph, with the velocity given by the rate of change of the displacement to the time which is dx/dt which is also the slope of the graph given as follows;


The velocity of the particle from t = 0 s to t = 4 s = 1/2 m/s = 0.5 m/s.
The genes that are inside the chromosomes of the cell.
Answer:
<em>Sonogram </em><em>is </em><em>a </em><em>medical </em><em>image </em><em>produced </em><em>by </em><em>ultrasound </em><em>echo. </em>
<em>It </em><em>is </em><em>used </em><em>to </em><em>help</em><em> </em><em>diagnose </em><em>causes </em><em>of </em><em>pain </em><em>and </em><em>swelling</em><em>. </em>
The maximum speed of Tim is 16.95 m/s.
The given parameters:
- Mass of the rope, m = 71 kg
- Tension on the rope, T = 220 N
- Coefficient of kinetic friction, = 0.1
- Time of motion, t = 8 s
<h3>What is Newton's second law of motion?</h3>
- Newton's second law of motion states that, the force applied to an object is directly proportional to the product of mass and acceleration of the object.
The net force on Tim is calculated by applying Newton's second law of motion as follows;

Thus, the maximum speed of Tim is 16.95 m/s.
Learn more about net horizontal force here: brainly.com/question/21684583