<span>The two foremost forces that were involved in the creation of the Cascade mountains are those of the tidal and tectonic forces. Tidal forces helped in eroding anything that was there previously, and the tectonic forces caused the eruption of these mountains to take place.</span>
Answer:

Explanation:
given,
radius of loop = 12.1 m
to find the minimum speed transverse by the rider to not to fall out upside down
centripetal force = 
gravitational force = m g
computing both the equation]





Answer:
This depends on what angle they are approaching each other before they collided.The two simple cases are if they are running in the same direction or opposite direction from each other. For either case, use the conservation of momentum equation to solve: M_total*V_result = M1*V1 + M2*V2
Explanation:
Here are two possible solutions.
Head-on collision: M1=78, V1=8.5, M2=72, V2=-7.5 (that's negative because he's running the other way), M_total = 78+72 = 150, so V_result = (78*8.5 - 72*7.5)/150 = 0.82 m/s. Sanity check, they weigh about the same and so most of their velocity should cancel out.
Running the same way: change the sign of V2 to positive so V_result = (78*8.5 + 72*7.5)/150 = 8.02 m/s. Sanity check, they weigh about the same and the resultant speed is between the two starting velocities.
<em>hope it helps:)</em>
Answer:
a = (v² − v₀²) / (2 (x − x₀))
Explanation:
v² = v₀² + 2a(x − x₀)
Subtract v₀² from both sides.
v² − v₀² = 2a(x − x₀)
Divide both sides by 2 (x − x₀).
(v² − v₀²) / (2 (x − x₀)) = a