Answer:
1838216 J
Explanation:
95 km/h = 26.39 m/s
40 km/h = 11.11 m/s
Initial kinetic energy
= .5 x 1600 x(26.39)²
= 557145.67 J
Final kinetic energy
= .5 x 1600 x ( 11.11)²
= 98745.68 J
Loss of kinetic energy
= 458400 J
Loss of potential energy
= mg x loss of height
= 1600 x 9.8 x 340 sin 15
= 1379816 J
Sum of Loss of potential energy and Loss of kinetic energy
= 1379816 + 458400
= 1838216 J
This is the work done by the friction . So this is heat generated.
To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,


Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that



Therefore the final kinetic energy is 3600MJ
Answer:
did you have the same answer to get the best
Answer:
D) 15s
Explanation:
let Te be the period of the block-spring system on earth and Tm be the period of the same system on the moon.let g1 be the gravitational acceleration on earth and g2 be the gravitational acceleration on the moon.
the period of a pendulum is given by:
T = 2π√(L/g)
so on earth:
Te = 2π√(L/g1)
= 6s
on the moon;
Tm = 2π√(L/g2)
since g2 = 1/6 g1 then:
Tm = 2π√(L/(1/6×g1))
= √(6)×2π√(L/(g1))
and 2π√(L/(g1)) = Te = 6s
Tm = (√(6))×6 = 14.7s ≈ 15s
Therefore, the period of the block-spring system on the moon is 15s.
Answer:
2.124 kg of water
Explanation:
height of the falls is about 48 meters.
Mass of water needed is 1kg = 1000g
Power needed is 106 watts.
The amount of energy in 106 watts in one sec is 106 joules.
To calculate the energy of the 1kg falling water = Mgh
Energy = 1000*9.81*48
Energy = 470880 joules.
1 megawatt is = 1000000watts
The kilogram of water needed is 1000000/470880 = 2.124 kg of water