If he feels like, is interested in it, and is able to grasp it, then why not ? Why not indeed ?
Answer:
C) 7.35*10⁶ N/C radially outward
Explanation:
- If we apply the Gauss'law, to a spherical gaussian surface with radius r=7 cm, due to the symmetry, the electric field must be normal to the surface, and equal at all points along it.
- So, we can write the following equation:

- As the electric field must be zero inside the conducting spherical shell, this means that the charge enclosed by a spherical gaussian surface of a radius between 4 and 5 cm, must be zero too.
- So, the +8 μC charge of the solid conducting sphere of radius 2cm, must be compensated by an equal and opposite charge on the inner surface of the conducting shell of total charge -4 μC.
- So, on the outer surface of the shell there must be a charge that be the difference between them:

- Replacing in (1) A = 4*π*ε₀, and Qenc = +4 μC, we can find the value of E, as follows:

- As the charge that produces this electric field is positive, and the electric field has the same direction as the one taken by a positive test charge under the influence of this field, the direction of the field is radially outward, away from the positive charge.
Answer:
The time taken to finish the race is 750 s.
Explanation:
The velocity of the person on the day of wind is slowed down by 2.0 m/s. So the person's velocity on the day of wind is 4-2=2 m/s.
The relation between time, speed and distance is t=v/d
Given d=1500 m and calculated v= 2 m/s.
t=1500/2
t=750 s.
Learn more about distance formula.
brainly.com/question/11954435
#SPJ10
Answer:
To summarize, <em><u>Jane's star</u></em> has a <em><u>red</u></em> light and <em><u>is traveling towards</u></em> the <em><u>Earth</u></em> while <em><u>John's star </u></em>has a <em><u>blue</u></em> light and <em><u>is traveling away</u></em> from the <em><u>Earth</u></em>. This is a <em><u>prime example</u></em> of the <em><u>Doppler Effect</u></em> in <em><u>motion</u></em>. The stars <em><u>look different </u></em>because <em><u>they are traveling in different directions.</u></em>
Answer : The final temperature of the mixture is 
Explanation :
First we have to calculate the mass of water.
Mass = Density × Volume
Density of water = 1.00 g/mL
Mass = 1.00 g/mL × 180 cm³ = 180 g
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of hot water (liquid) = 
= specific heat of ice (solid)= 
= mass of hot water = 180 g
= mass of ice = 20 g
= final temperature of mixture = ?
= initial temperature of hot water = 
= initial temperature of ice = 
Now put all the given values in the above formula, we get


Therefore, the final temperature of the mixture is 