Answer:
-0.00152 V
Explanation:
Parameters given:
Diameter of the loop = 11 cm = 0.11m
Rate of change of magnetic field, dB/dt = 0.16 T/s
Radius of the loop = 0.055m
The area of the loop will be:
A = pi * r²
A = 3.142 * 0.055²
A = 0.0095 m²
The EMF induced in a loop of wire due to the presence of a changing magnetic field, dB, in a time interval, dt, is given as:
EMF = - N * A * dB/dt
In this case, there's only one loop, so N = 1.
Therefore:
EMF = -1 * 0.0095 * 0.16
EMF = -0.00152 V
The negative sign indicates that the current flowing through the loop acts opposite to the change in the magnetic field.
20/45=0.4*100= 44.4 so the answer is..................................................
Answer: 44.4%
Answer:
-1.5m/s²
Explanation:
Acceleration can be thought of as [Change in Velocity]/[Change in time]. To find these changes, you simply subtract the initial quantity from the final quantity.
So for this question you have:
- V_i = 110m/s
- V_f = 80m/s
- t_i = 0s
- t_f = 20s
which means that the acceleration = (80-110)/(20-0)[m/s²] = (-30/20)m/s² = -1.5m/s²