Answer:
The induced current is 0.084 A
Explanation:
the area given by the exercise is
A = 200 cm^2 = 200x10^-4 m^2
R = 5 Ω
N = 7 turns
The formula of the emf induced according to Faraday's law is equal to:
ε = (-N * dφ)/dt = (N*(b2-b1)*A)/dt
Replacing values:
ε = (7*(38 - 14) * (200x10^-4))/8x10^-3 = 0.42 V
the induced current is equal to:
I = ε /R = 0.42/5 = 0.084 A
Answer:
i = 61 degree
Explanation:
Given,

Now, by the snell's law

Now,
Sin i / sin r = n 2 / n 1
sin i / sin r (45 - 24.09) = 2.45 / 1
i = 60.97 degree
Hey, I think someone should help u cause I’m stuck too
Hope this helps !
Answer:
Resistance increases with increase in temperature which depends on power supplied which also depends on voltage.
Thermal expansion will make resistance larger.
Explanation:
Light bulb is a good example of a filament lamp. If we plot the graph of voltage against current we will notice that resistance is constant at constant temperature.
The filament heats up when an electric current passes through it, and produces light as a result.
The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.
tensile stress begins to appear in resistor as the temperature rises. Thus, the resistance value increases as the temperature rises. Resistance value can only decrease as the temperature rises in case of thin film resistor with aluminium substrate.
In case of a filament bulb, the resistance will increase as increase in length of the wire. The thermal expansion in this regard is linear expansivity in which resistance is proportional to length of the wire.
Resistance therefore get larger.
Answer:
6692J
Explanation:
Power is defined as the rate at which work is being done.
So,
Power =
Work done = Power x time
Given parameters:
Power = 478watts
Time = 14s
So;
Work done = 478 x 14 = 6692J