Answer:
The answer your looking for is option 2 - Inertia
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C
Question:
What two forces are balanced in what we call gravitational equilibrium?
A) the electromagnetic force and gravity
B) outward pressure and the strong force
C) outward pressure and inward gravity
D) the strong force and gravity
E) the strong force and kinetic energy
Answer:
The correct answer is C) Outward Pressure and Inward gravity
Explanation:
Gravitational equilibrium is a balance between the inward pull of gravity and the outward push of internal gas pressure. It also refers to the condition of a star in which the weight of overlying layers at each point is balanced by the total pressure at that point.
As the weight increases in the lower layers of the sun, the pressure also increases to maintain this balance. So you find that the outward push of pressure balances the inward pull of gravity thus creating an equilibrium.
Why is gravitational equilibrium important?
The simple answer is <u>balance. </u> If for instance the sun as a stable star (which has gravitational equilibrium) loses it's balance, it becomes highly unstable and prone to violent outbursts. These outbursts are caused by the very high radiation pressure at the star's upper layers, which blows significant portions of the matter at the "surface" into space during eruptions that may rage for several years. Of course such a condition is adverse to the existence and support of life.
Cheers!
To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.
The linear mass density is given as,



The expression for the wavelength of the standing wave for the second overtone is

Replacing we have


The frequency of the sound wave is



Now the velocity of the wave would be



The expression that relates the velocity of the wave, tension on the string and linear mass density is





The tension in the string is 547N
PART B) The relation between the fundamental frequency and the
harmonic frequency is

Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore

Then,

Rearranging to find the fundamental frequency


