<h3><u>Answer;</u></h3>
The different atoms have different quantized energy levels
<h3><u>Explanation;</u></h3>
- The atoms of different elements have different energy levels because they have different nuclear charges and spins, and different numbers of electrons.
- Each different kind of atom, like hydrogen or radon, has a distinct nuclear charge and number of electrons. This makes the potential energy function different for each atom, and therefore results in different energy levels.
- In an emmission spectra, each bright band corresponds to a difference between energy levels within the atom.
If the corner is rounded and is perfectly circular, then the acceleration is centripetal and is always directed toward the center.
The object will move if the forces are unbalanced.
Newtons second tells you that when a net force (the unbalanced force) is applied to and object it will produce an acceleration (movement) in direct proportion to the force and in inverse proportion to the mass of the object.
Answer:
I_v = 2,700 W / m^2
I_m = 610 W / m^2
I_s = 16 W / m^2
Explanation:
Given:
- The Power of EM waves emitted by Sun P_s = 4.0*10^26 W
- Radius of Venus r_v = 1.08 * 10^11 m
- Radius of Mars r_m = 2.28 * 10^11 m
- Radius of Saturn r_s = 1.43 * 10^12 m
Find:
Determine the intensity of electromagnetic waves from the sun just outside the atmospheres of (a) Venus, (b) Mars, and (c) Saturn.
Solution:
- We know that Power is related to intensity and surface area of an object follows:
I = P / 4*pi*r^2
Where, A is the surface area of a sphere models the atmosphere around the planets.
a)
- The intensity at the surface of Venus is calculated as:
I_v = P_s / 4*pi*r^2_v
I_v = 4.0*10^26 / 4*pi*(1.08*10^11)^2
I_v = 2,700 W / m^2
b)
- The intensity at the surface of Mars is calculated as:
I_m = P_s / 4*pi*r^2_m
I_m = 4.0*10^26 / 4*pi*(2.28*10^11)^2
I_m = 610 W / m^2
c)
- The intensity at the surface of Saturn is calculated as:
I_s = P_s / 4*pi*r^2_s
I_s = 4.0*10^26 / 4*pi*(1.43*10^12)^2
I_s = 16 W / m^2