Answer:
u = 3.35 m/s
Explanation:
given,
mass , m = 0.455 kg
R = 0.675 m
Height of Loop = 1.021 m
the speed required at the top of loop be v
equating the force vertically


v² = 6.622
v = 2.57 m/s
Let the initial speed of ball be u
using conservation of energy

where, 



0.7 u² = 7.85092
u² = 11.2156
u = 3.35 m/s
the initial speed is 3.35 m/s
Is the physical phenomena arising from the force caused by magnet objects that produce fields that attract or repel other objects while magnetic field is a region around the magnetic material or a moving electric charge within the force of magnetism acts
Momentum is a vector quantity, and is always conserved. Whenever a collision occurs between two objects, the objects behave under the principle of conservation of momentum. Therefore, if an object moves in the direction opposite to its original direction after a collision, then this indicates that the momentum of the colliding object was greater than the object under consideration.
The total quantity of electrons that have flowed through a circuit is a
quantity of charge, measured in Coulombs, or in Ampere-seconds.
The <em><u>rate</u></em> of flow of electrons, or more accurately the rate of flow of
the charge on them, is electrical current. Its unit is the Ampere.
1 Ampere is 1 Coulomb of charge per second.
Answer:
The induced emf in the loop is 
Explanation:
Given that,
Length of the wire, L = 1.22 m
It changes its shape is changed from square to circular. Then the side of square be its circumference, 4a = L
4a = 1.22
a = 0.305 m
Area of square, 
Circumference of the loop,

Area of circle,

The induced emf is given by :

So, the induced emf in the loop is 