B- the acceleration is greater for the more massive rock
Answer:
A. The model was the result of hundreds of years of experiments.
Explanation:
Since it is not possible to visualize an atom in isolation, scientists have spent hundreds of years experimenting and creating atomic models, that is, images that serve to explain the constitution, properties and behavior of atoms.
The earliest who imagined the existence of the atoms were the Greek philosophers Leucippus and Democritus in about 450 BCE. According to them, everything would be formed by tiny indivisible particles. Hence the origin of the name "atom", which comes from the Greek a (no) and tome (parts).
But in the nineteenth century, some scientists began to conduct experimental tests increasingly accurate thanks to technological advances. Not only was it discovered that everything was actually made up of tiny particles, but it was also possible to understand more and more about the atomic structure.
Scientists used the information discovered by other scholars to develop the atomic model. In this way, the discoveries of one scientist were replaced by those of others. The concepts that were correct remained, but those that proved to be non-real were now abandoned. Thus, new atomic models were created. This series of discoveries of the atomic structure until arriving at the accepted models today was known like the evolution of the atomic model.
Answer:
Wind is the primary renewable resource used for electric power generation in the state. In 2019, wind provided 97% of the state's renewable energy generation, and Illinois was sixth in the nation in utility-scale (1 megawatt or greater) wind capacity, with about 5,200 megawatts online.
Explanation:
Answer:
How fast and efficient the energy is released.
Explanation:
Before burning the marshmallow energy is stored in it in the form of chemical bond energy or chemical potential energy. So upon burning this energy is released. So there will be a difference in energy release from a burned marshmallow and the one we eat straight from package.
This is an interesting (read tricky!) variation of Rydberg Eqn calculation.
Rydberg Eqn: 1/λ = R [1/n1^2 - 1/n2^2]
Where λ is the wavelength of the light; 1282.17 nm = 1282.17×10^-9 m
R is the Rydberg constant: R = 1.09737×10^7 m-1
n2 = 5 (emission)
Hence 1/(1282.17 ×10^-9) = 1.09737× 10^7 [1/n1^2 – 1/25^2]
Some rearranging and collecting up terms:
1 = (1282.17 ×10^-9) (1.09737× 10^7)[1/n2 -1/25]
1= 14.07[1/n^2 – 1/25]
1 =14.07/n^2 – (14.07/25)
14.07n^2 = 1 + 0.5628
n = √(14.07/1.5628) = 3