I have no clue sorry maybe try applying the answers and questions then I'll answer for u
I'd say A. because an inference is a guess/estimate. You can assume that the egg rolled off the kitchen but you know that C and D are true.
-- The vertical component of the ball's velocity is 14 sin(<span>51°) = 10.88 m/s
-- The acceleration of gravity is 9.8 m/s².
-- The ball rises for 10.88/9.8 seconds, then stops rising, and drops for the
same amount of time before it hits the ground.
-- Altogether, the ball is in the air for (2 x 10.88)/(9.8) = 2.22 seconds
==================================
-- The horizontal component of the ball's velocity is 14 cos(</span><span>51°) = 8.81 m/s
-- At this speed, it covers a horizontal distance of (8.81) x (2.22) = <em><u>19.56 meters</u></em>
before it hits the ground.
As usual when we're discussing this stuff, we completely ignore air resistance.
</span>
Answer:
The answer to your question is: total energy = 30100.4 J
Explanation:
Kinetic energy (KE) is the energy due to the movement of and object, its units are joules (J)
Data
mass = 1280 kg
speed = 4.92 m/s
Force = 509 N
distance = 28.7 m
Formula

Work = Fd
Process
- Calculate Kinetic energy
- Calculate work
- Add both results
KE = 
KE = 15492.1 J
Work = (509)(28.7)
Work = 14608.3 J
Total = 15492.1 + 14608.3
Total energy = 30100.4 J
Answer:
0.0321 g
Explanation:
Let helium specific heat 
Assuming no energy is lost in the process, by the law of energy conservation we can state that the 20J work done is from the heat transfer to heat it up from 273K to 393K, which is a difference of ΔT = 393 - 273 = 120 K. We have the following heat transfer equation:

where
is the mass of helium, which we are looking for:
