Answer:
3 km/h
Explanation:
Let's call the rowing speed in still water x, in km/h.
Rowing speed in upstream is: x - 2 km/h
Rowing speed in downstream is: x + 2 km/h
It took a crew 9 h 36 min ( = 9 3/5 = 48/5) to row 8 km upstream and back again. Therefore:
8/(x - 2) + 8/(x + 2) = 48/5 (notice that: time = distance/speed)
Multiplying by x² - 2², which is equivalent to (x-2)*(x+2)
8*(x+2) + 8*(x-2) = (48/5)*(x² - 4)
Dividing by 8
(x+2) + (x-2) = (6/5)*(x² - 4)
2*x = (6/5)*x² - 24/5
0 = (6/5)*x² - 2*x - 24/5
Using quadratic formula






A negative result has no sense, therefore the rowing speed in still water was 3 km/h
'A' is correct. B, C, and D are false statements.
It could be A :) not sure tho
Answer:
3.24 m/s
Explanation:
Suppose that the boat sails with velocity (relative to water) direction being perpendicular to water stream. Had there been no water flow, it would have ended up 0m downstream
Therefore, the river speed is the one that push the boat 662 m downstream within 539 seconds. We can use this to calculate its magnitude

So the boat velocity vector relative to the bank is the sum of of the boat velocity vector relative to the water and the water velocity vector relative to the bank. Since these 2 component vectors are perpendicular to each other, the magnitude of the total vector can be calculated using Pythagorean formula:
m/s