<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>1</u>
- Initial velocity=u=0m/s
- Final velocity=v=10m/s
- Time=10s=t




<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>2</u>
- initial velocity=0m/s=u
- Final velocity=v=0.25m/s
- Time=t=2s



Person-1 is accelerating faster.
Answer:
v = 20.31 m/s
Explanation:
p = mv -> v = p/m = 32,500 kg*m/s / 1,600 kg = 20.31 m/s
Answer:
C) rift valley
Explanation:
A rift valley is a lowland region formed by the interaction of Earth's tectonic plates. This small rift valley has a typical formation—long, narrow, and deep. It was formed by the Thingvellir rift, where the North American and Eurasian tectonic plates are tearing, or rifting, apart over a hotspot on the island of Iceland.
Answer:

Explanation:
mass of the bicycle + cyclist = 50 kg
constant speed = 6 km/h
a cyclist coasting down a 5.0° incline
the downward velocity is constant, so net acceleration must be zero
the air drag must be equal to gravitational force downward along the ramp
now for upward motion





Answer:
(a) 2.85 m
(b) 16.5 m
(c) 21.7 m
(d) 22.7 m
Explanation:
Given:
v₀ₓ = 19 cos 71° m/s
v₀ᵧ = 19 sin 71° m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
(a) Find Δy when t = 3.5 s.
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (19 sin 71° m/s) (3.5 s) + ½ (-9.8 m/s²) (3.5 s)²
Δy = 2.85 m
(b) Find Δy when vᵧ = 0 m/s.
vᵧ² = v₀ᵧ² + 2 aᵧ Δy
(0 m/s)² = (19 sin 71° m/s)² + 2 (-9.8 m/s²) Δy
Δy = 16.5 m
(c) Find Δx when t = 3.5 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.5 s) + ½ (0 m/s²) (3.5 s)²
Δx = 21.7 m
(d) Find Δx when Δy = 0 m.
First, find t when Δy = 0 m.
Δy = v₀ᵧ t + ½ aᵧ t²
(0 m) = (19 sin 71° m/s) t + ½ (-9.8 m/s²) t²
0 = t (18.0 − 4.9 t)
t = 3.67
Next, find Δx when t = 3.67 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.67 s) + ½ (0 m/s²) (3.67 s)²
Δx = 22.7 m