Explanation:
Let the speeds of father and son are
. The kinetic energies of father and son are
. The mass of father and son are 
(a) According to given conditions, 
And 
Kinetic energy of father is given by :
.............(1)
Kinetic energy of son is given by :
...........(2)
From equation (1), (2) we get :
..............(3)
If the speed of father is speed up by 1.5 m/s, so the ratio of kinetic energies is given by :


Using equation (3) in above equation, we get :

(b) Put the value of
in equation (3) as :

Hence, this is the required solution.