Answer:

Explanation:
Hello,
In this case, we can solve this problem by noticing that the heat lost by the warm water is gained by the ice in order to melt it:

In such a way, the cooling of water corresponds to specific heat and the melting of ice to sensible heat and specific heat also that could be represented as follows:

Thus, specific heat of water is 4.18 J/g°C, heat of melting is 334 J/g and specific heat of ice is 2.04 J/g°C, thus, we can compute the final temperature as shown below:

Best regards.
Answer:
10 atm.
Explanation:
Using the combined gas law equation as follows;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
P1 = 5 atm
P2 = ?
V1 = 4L
V2 = 2L
T1 = 25°C = 25 + 273 = 298K
T2 = 25°C = 298K
Using P1V1/T1 = P2V2/T2
5 × 4/298 = P2 × 2/298
20/298 = 2P2/298
Cross multiply
298 × 20 = 298 × 2P2
5960 = 596P2
P2 = 5960 ÷ 596
P2 = 10 atm.
Answer:
magnesium
Explanation:
magnesium is in Group 2, in the periodic table. this means that it has 2 valence electrons. the less valence electrons an element or atom has, the more reactive. Selenium has 6 valence electrons. as a result, Mg is more reactive
I think this because they are getting much older and weaker so they’re bones tend to break down easily