Answer:
Explanation:
Given
Force of repulsion between two charge particle is given by force F
Electrostatic force is given by

where
and
is the charges of particle
r=distance between charge particle
when charges are doubled and distance is reduced to half
i.e. q become 2 q and r becomes 0.5 r



Answer:
Good Luck!
Follow Me
<h2><u><em>
D</em></u></h2>
Explanation:
3) For a displacement time graph, straight line denotes constant speed. For a velocity time graph, the graph parallel to time axis denotes constant speed. Hence, the correct option is a) and d).
Answer:
The magnitude and direction of the magnetic field is 93.63 T in negative x direction.
Explanation:
Given;
speed of the electron in positive y direction, v = 2.0 x 10⁵ m/s
magnetic force on the electron, F in negative z direction = 3.0 x 10⁻¹² N
The magnitude of the magnetic force is given by;
F = Qv x B
B = F / Qv

The direction of the magnetic field is is as;
Based on the direction of magnetic force (negative z direction), the charge will be directed into negative y-direction because electron is negatively charged. Thus, the direction of the magnetic field will be in the negative x-direction

Therefore, the magnitude and direction of the magnetic field is 93.63 T in negative x direction.
Answer:
Our solar system has total eight planets out of which four are inner planets and four are outer planets. The four outer planets are Jupiter, Saturn, Uranus and Neptune. The common characteristics of outer planets is that they are gaseous planets. They are larger on size than the inner rocky planets and are faraway from Sun. They have larger period of revolution around the Sun.
Uranus is a gaseous planet and lies far from Sun and hence has large period of revolution. It takes 84 Earth years to revolve around Sun. This data indicates that Uranus resides in the outer region of the Solar System.
The y-component of the initial velocity vector is zero only in scenarios A and C. The weight/package on either plane inherits a non-zero x-component that matches the plane's horizontal velocity, but with respect to the vertical direction the objects are at rest, and dropping them from a given height doesn't confer them an initial vertical velocity. On the other hand, if the object was thrown upward and allowed to fall, or shot downward by a cannon, then the initial vertical velocity would be non-zero.
In scenario B, the dolphin must have some non-zero y-component of velocity in order to launch itself out of the water, because otherwise it would stay at a fixed depth.