Answer:
The greatest acceleration the man can give the airplane is 0.0059 m/s².
Explanation:
Given that,
Mass of man = 85 kg
Mass of airplane = 109000 kg
Distance = 9.08
Coefficient of static friction = 0.77
We need to calculate the greatest friction force
Using formula of friction

Where, m = mass of man
g = acceleration due to gravity
Put the value into the formula


We need to calculate the acceleration
Using formula of newton's second law


Put the value into the formula


Hence, The greatest acceleration the man can give the airplane is 0.0059 m/s².
Answer:
C. Planet D has the greatest mass and will exert a greater gravitational force
Answer: the external agent must do work equal to -1.3 × 10⁻⁸ J
Explanation:
Given that;
Mass M1 = 7.0 kg
r = 3.0/2 m = 1.5 m
Mass M2 = 21 kg
we know that G = 6.67 × 10⁻¹¹ N.m²/kg²
work done by an external agent W = -2GM2M1 / r
so we substitute
W = (-2 × 6.67 × 10⁻¹¹ × 21 × 7) / 1.5
W = -1.96098 × 10⁻⁸ / 1.5
W = -1.3 × 10⁻⁸ J
Therefore the external agent must do work equal to -1.3 × 10⁻⁸ J
I belive it could be 6.5 but I could be wrong
Answer: 1160 m
Explanation:
Speed = distance / time. Plug in 40 m/s for speed and 29 s for time in order to get the distance, 1160 m.