Answer:
<u>-8</u>
Explanation:
if he starts at ten and takes 10 steps left he'll be at -10... then if he takes 2 steps to the right , he's at -8 on the number-line
Answer:
To create a second harmonic the rope must vibrate at the frequency of 3 Hz
Explanation:
First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,
f₁ = v/2L
where,
v = speed of wave = 36 m/s
L = Length of rope = 12 m
f₁ = fundamental frequency
Therefore,
f₁ = (36 m/s)/2(12 m)
f₁ = 1.5 Hz
Now the frequency of nth harmonic is given in general, as:
fn = nf₁
where,
fn = frequency of nth harmonic
n = No. of Harmonic = 2
f₁ = fundamental frequency = 1.5 Hz
Therefore,
f₂ = (2)(1.5 Hz)
<u>f₂ = 3 Hz</u>
Let t = Theta and p = Phi
Tan t = y/x Then x =y/Tant.
Tant = y/(x-d) x-d = y/Tanp
y/Tant - d = y/Tanp
y -d*Tanr = y*Tant/Tanp
y-y*Tant/Tanp = d*Tanr
y(1 - Tanr/Tanp = d*Tant
y = d*Tant/(1-Tant/Tanp)
(2.5,-1) There you go bro