1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kykrilka [37]
3 years ago
11

A circuit has a current of 1.2 A. If the voltage decreases to one-third of its original amount while the resistance remains

Physics
1 answer:
beks73 [17]3 years ago
7 0
G 3.6A I think so try this answer
You might be interested in
The power of a purely resistive lead is always positive although the current and voltage are sometimes negative. explain​
pickupchik [31]

Answer:

Current is in phase with voltage in a resistive circuit. Note that the wave form for power is always positive, never negative for this resistive circuit. This means that power is always being dissipated by the resistive load, and never returned to the source as it is with reactive loads.Explanation:

7 0
3 years ago
What is the relationship between air pressure and air temperature?
LenKa [72]
The relationship between the two is that air temperature changes the air pressure. For example, as the air warms up the molecules in the air become more active and they use up more individual space even though there is the same<span> number of molecules. This causes an </span>increase<span> in the air pressure.</span>
8 0
3 years ago
A ball rolls of buildings that is 100m high calculate the time that it takes for ball to hit the ground​
LUCKY_DIMON [66]

Answer:

2as=v2-u2

2000=v2

V=44

V=u+at

44/10=t

T=4.4seconds

5 0
3 years ago
A horizontal compass is placed 21 cm due south from a straight vertical wire carrying a 36 a current downward. in what direction
Anit [1.1K]

 <span>
The needle of a compass will always lies along the magnetic field lines of the earth. 
A magnetic declination at a point on the earth’s surface equal to zero implies that 
the horizontal component of the earth’s magnetic field line at that specific point lies along 
the line of the north-south magnetic poles. </span>

The presence of a current-carrying wire creates an additional <span>
magnetic field that combines with the earth’s magnetic field. Since magnetic 
<span>fields are vector quantities, therefore the magnetic field of the earth and the magnetic field of the vertical wire must be combined vectorially. </span></span>

<span>
Where:</span>

B1 = magnetic field of the earth along the x-axis = 0.45 × 10 ⁻ ⁴ T

B2 = magnetic field due to the straight vertical wire along the y-axis

We can calculate for B2 using Amperes Law:

B2 = μ₀ i / [ 2 π R ]

B2 = [ 4π × 10 ⁻ ⁷ T • m / A ] ( 36 A ) / [ 2 π (0.21 m ) ] <span>
B2 = 5.97 × 10 ⁻ ⁵ T = 0.60 × 10 ⁻ ⁴ T </span>

The angle can be calculated using tan function:<span>
tan θ = y / x = B₂ / B₁ = 0.60 × 10 ⁻ ⁴ T / 0.45 × 10 ⁻ ⁴ T <span>
tan θ = 1.326</span></span>

θ = 53°

<span>
<span>The compass needle points along the direction of 53° west of north.</span></span>

8 0
3 years ago
As a city planner, you receive complaints from local residents about the safety of nearby roads and streets. One complaint conce
WINSTONCH [101]

Answer:

a)   x₁ = 290.50 feet ,  x₂ = 169.74 feet , b)  v_max= 41 mph

Explanation:

For this exercise we will work in two parts, the first with Newton's second law to find the acceleration of vehicles

X Axis          fr = m a

Y Axis          N-W = 0

                    N = W = mg

The force of friction has the expression

                  fr = μ N

We replace

                 μ mg = ma

                 a = μ g

                 g = 32 feet / s²

Let's calculate the acceleration for each coefficient and friction

μ              a (feet / s2)

0.599       19.168

0.536       17,152

0.480       15.360

0.350        11.200

These are the acceleration values, for the maximum distance we use the minimum acceleration (a₁ = 11,200 feet / s²) and for the minimum braking distance we use the maximum acceleration (x₂ = 19,168 feet / s²)

                 v² = v₀² - 2 a x

When the speed stops it is zero

                 x₁ = v₀² / 2 a₁

                         

Let's reduce speed

            v₀ = 55mph (5280 foot / 1 mile) (1h / 3600s) = 80,667 feet / s²

Let's calculate the maximum braking distance

            x₁ = 80.667² / (2 11.2)

            x₁ = 290.50 feet

The minimum braking distance

            x₂ = 80.667² / (2 19.168)

            x₂ = 169.74 feet

b) maximum speed to stop at distance x = 155 feet

            0 = v₀² - 2 a x

            v₀ = √2 a x

We calculate the speed for the two accelerations

             v₀₁ = √ (2 11.2 155)

             v₀₁ = 58.92 feet / s

       

             v₀₂ = √ (2 19.168 155)

             v₀₂ = 77.08 feet / s

To stop at the distance limit in the worst case the maximum speed must be 58.92 feet / s = 40.85 mph = 41 mph

5 0
3 years ago
Other questions:
  • The manufacturer of a 1.5 V D flashlight battery says that the battery will deliver 9 mA for 42 continuous hours. During that ti
    11·1 answer
  • 15.0 N object is pulled up an inclined plane at constant velocity. If the inclined plane makes an
    5·1 answer
  • Suppose that a balloon is being filled with air at a rate of 10 cm3/s. (Assume that theballoon is a perfect sphere.) At what rat
    8·1 answer
  • 2. How does the medium vibrate in a transverse wave?
    13·1 answer
  • ILL GIVE BRAINLIEST.
    14·1 answer
  • Ilya and Anya each can run at a speed of 7.50 mph and walk at a speed of 4.00 mph. They set off together on a route of length 5.
    14·1 answer
  • A 2.00-m long uniform beam has a mass of 4.00 kg. The beam rests on a fulcrum that is 1.20 m from its left end. In order for the
    14·1 answer
  • if you were floating in the solar system at equal distances between mars (small mass) and jupiter (large mass) which planet woul
    13·1 answer
  • [4] A tortoise and a hare cover the same distance in a race. The hare goes very fast but stops frequently while the tortoise has
    14·1 answer
  • A spring is hung from the ceiling. A 0.442-kg block is then attached to the free end of the spring. When released from rest, the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!