Answer A: Connect a wire coil to an ammeter. Move a bar magnet into and out of the wire coil as you observe the ammeter.
<h3>Answer:</h3>
162.43 g of FeCl₂
<h3>
Explanation:</h3>
Step 1: Calculate mass of Fe;
As,
Density = Mass ÷ Volume
Or,
Mass = Density × Volume
Where Volume is the volume of water displaced = 10.4 mL
Putting values,
Mass = 7.86 g.mL⁻¹ × 10.4 mL
Mass = 81.744 g of Fe
Step 2: Calculate amount of FeCl₂;
The balance chemical equation is as follow,
Fe + 2 HCl → FeCl₂ + H₂ ↑
According to this equation,
55.85 g (1 mol) Fe produced = 110.98 g (1 mol) of FeCl₂
So,
81.744 g Fe will produce = X g of FeCl₂
Solving for X,
X = (81.744 g × 110.98 g) ÷ 55.85 g
X = 162.43 g of FeCl₂
Hello!
Your answer is A.. Earth's core is the most dense layer and it consists of the outer core and the inner core.
Hope this helps :))
Answer:
Explanation:
Increasing Volume while maintaining constant pressure requires a proportional increase in Temperature so the gas pressure will be maintained as constant.
Consider...
V₁ = V₁ V₂ = 4V₁
T₁ = T₁ T₂ = ?
Charles Law => T ∝ V at constant P ... that is, increasing temperature generates a proportional increase in volume to maintain constant pressure.
Empirical Charles Law Relation is ...
V₁/T₁ = V₂/T₂ => T₂ = T₁(V₂/V₁) = T₁(4V₁/V₁) = 4T₁
Increasing Volume of a gas by 4 times requires a 4 times increase in absolute temperature in order to maintain constant pressure.