Answer:
Element: H (hydrogen)
Compound: H2O (water)
Explanation: An element is made up of a singular atom while a compound is made up of 2 or more
B. nuclear to thermal to mechanical to electrical
One mole of a substance contains 6.02 × 10∧23 particles. Thus we first convert 89.2 g to moles. 1 mole of sodium contains 23 g
Hence 89.2 g = 89.2 / 23 g = 3.878 moles
Therefore, 3.878 × 6.02×10∧23 particles= 23.346 × 10∧23 particles
Hence 89.2 g of sodium contains 2.335 ×10∧24 particles
Answer:
Explanation:
When a salt is dissolved , it increases the boiling point . Increase in boiling point depends upon number of ions . So it is a colligative property .
.19 m AgNO₃ . Each molecule will ionize into two ions . So effective molar concentration is 0.19 x 2 = .38 m
0.17 m CrSO4.Each molecule will ionize into two ions . So effective molar concentration is 0.17 x 2 = .34 m
0.13 m Mn(NO₃)₂. Each molecule will ionize into three ions . So effective molar concentration is 0.13 x 3 = .39 m
0.31 m Sucrose(nonelectrolyte). Molecules will not ionize . So effective molar concentration is 0.31 x 1 = .31 m
Higher the molar concentration , greater the depression in boiling point .
So lowest boiling point is 0.13 m Mn(NO₃)₂.
second highest boiling point is 0.19 m AgNO3.
Third lowest boiling point is 0.17 m CrSO4
Highest boiling point or lowest depression 0.31 m Sucrose.
a . 4
b . 1
c . 2
d . 3
The equilibrium constant is 1.3 considering the reaction as written in the question.
<h3>Equilibrium in chemical reactions</h3>
In a chemical reaction, the equilibrium constant is calculated based on the equilibrium concentration of each specie. The equation of this reaction is;
A (g) + 2B (g) ⇌ 3C (g).
The initial concentration of each specie is;
- A - 9.22 M
- B - 10.11 M
- C - 27.83 M
The equilibrium concentration of B is 18.32 M
We now have to set up the ICE table as follows;
A (g) + 2B (g) ⇌ 3C (g)
I 9.22 10.11 27.83
C -x -x +x
E 9.22 - x 10.11 - x 27.83 + x
The equilibrium concentration of B is 18.32 M hence;
10.11 - x = 18.32
x = 10.11 - 18.32 = -8.21
Hence;
Equilibrium concentration of A = 9.22 - (-8.21) = 17.43
Equilibrium concentration of C = 27.83 + (-8.21) = 19.62
Equilibrium constant K = [19.62]^3/[17.43] [18.32]^2
K = 1.3
Learn more about equilibrium constant: brainly.com/question/17960050