Answer:
162 g Fe₂O₃
Explanation:
To find the mass of Fe₂O₃, you need to (1) convert grams C to moles C (via molar mass from periodic table), then (2) convert moles C to moles Fe₂O₃ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles Fe₂O₃ to grams (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to reflect the given value.
Molar Mass (C): 12.011 g/mol
2 Fe₂O₃(s) + 3 C(s) ---> 4 Fe(s) + 3 CO₂(g)
Molar Mass (Fe₂O₃): 2(55.845 g/mol) + 3(15.998 g/mol)
Molar Mass (Fe₂O₃): 159.684 g/mol
18.3 g C 1 mole 2 moles Fe₂O₃ 159.684 g
-------------- x ---------------- x ------------------------- x ----------------- = 162 g Fe₂O₃
12.011 g 3 moles C 1 mole
Explanation:
Entropy of a reaction ΔS∘rxn is the degree of disoderliness in a system. Gases generally have a higher degree of disorder compared to liquids. Hence for the reaction 2H2(g)+O2(g) ⟶ 2H2O(l), the entropy decreases sice the reactants are in the gaseous state and the products is in the liquid state of matter
Well physical would be if you have Clay and you molded into a new shape or if you put butter on your toes and it melts or water evaporating from the surface of the ocean chemical changes would be milk going sour jewellery tarnishing which means turning into a different color or rust bread putting it in the oven and turning it into toes or rust forming on the nail that is left outside
Answer: Option (C) is the correct answer.
Explanation:
A mixture in which the components are evenly distributed or the components are present in same proportion throughout the mixture is known as a homogeneous mixture or solution.
As a result, there exists only one phase in the mixture. The components of mixture can be in solid, liquid or gaseous form.
For example, when sodium chloride (solid phase) is added in water (liquid phase) then it completely dissolve in it. Thus, there will be no boundary between the solute and solvent. Hence, it forms a homogeneous solution.
Therefore, we can conclude that a homogeneous mixture or solution consists of substances in more than one phase.