I believe it’s (D. Any object)
Answer:
a) a = 4.9 m / s², N = 16.97 N and b) F = 9.8 N
Explanation:
a) For this exercise we will use Newton's second law, we write a reference system with the x axis parallel to the plane, see attached, in this system the only force we have to break down is weight, let's use trigonometry
sin 30 = Wx / W
cos 30 = Wy / W
Wx = W sin30
Wy = W cos 30
Let's write the equations on each axis
X axis
Wx = ma
Y Axis
N- Wy = 0
N = Wy = mg cos 30
N = 2.0 9.8 cos 30
N = 16.97 N
We calculate the acceleration
a = Wx / m
a = mg sin 30 / m
a = g sin 30
a =9.8 sin 30
a = 4.9 m / s²
b) For the block to move with constant speed, the acceleration must be zero, so the force applied must be equal to the weight component
F -Wx = 0
F = Wx
F = m g sin 30
F = 2.0 9.8 sin 30
F = 9.8 N
Answer:
The sled slides d=0.155 meters before rest.
Explanation:
m= 60 kg
V= 2 m/s
μ= 0.3
g= 9.8 m/s²
W= m * g
W= 588 N
Fr= μ* W
Fr= 176.4 N
∑F = m * a
a= (W+Fr)/m
a= 12.74m/s²
t= V/a
t= 0.156 s
d= V*t - a*t²/2
d= 0.155 m
The planar simple harmonic wave travels in the positive direction of x axis with wave velocity u=2m/s, and the vibration curve of the particle at the origin in cosinusoidal form is shown in the figure.
Try to find (1) the vibration function of the particle at the origin, (2) the wave function of the planar simple harmonic wave according to the origin.