Answer:
4.4 seconds
Explanation:
Given:
a = -5.5 m/s²
v₀ = 0 m/s
y₀ = 53 m
y = 0 m
Find: t
y = y₀ + v₀ t + ½ at²
0 = 53 + 0 + ½ (-5.5) t²
0 = 53 − 2.75 t²
t = 4.39
Rounded to two significant figures, it takes 4.4 seconds for the object to land.
Answer:
c. Case iii
Explanation:
the ball will experience the largest change in case iii
Answer:
14.8 kg
Explanation:
We are given that




We have to find the mass of the pulley.
According to question



Moment of inertia of pulley=

Where 



Hence, the mass of the pulley=14.8 kg
Answer:
C
Explanation:
When a ball rolls down a hill, Potential Energy Conversion takes place to Kinetic Energy.