Answer:
25 m/s in the opposite direction with the ship recoil velocity.
Explanation:
Assume the ship recoil velocity and velocity of the cannon ball aligns. By the law of momentum conservation, the momentum is conserved before and after the shooting. Before the shooting, the total momentum is 0 due to system is at rest. Therefore, the total momentum after the shooting must also be 0:

where
are masses of the ship and ball respectively.
are the velocities of the ship and ball respectively, after the shooting.



So the cannon ball has a velocity of 25 m/s in the opposite direction with the ship recoil velocity.
1.14 km = Distance
2.30 m/s = Speed
5.12 cm/s2 = Speed
6.150 mph = Distance
8.3.2 sec = Speed
9.25 ft = Distance
Answer:
(a): The car's relative position to the base of the cliff is x= 32.52m.
(b): The lenght of the car in the ir is tfall= 1.78 sec.
Explanation:
Vo= 0
V= ?
d= 50m
h= 30m
a= 4 m/s²
t= √(2*d/a)
t= 5 sec
V= a*t
V= 20 m/s
Vx= V * cos(24º)
Vx= 18.27 m/s
Vy= V* sin(24º)
Vy= 8.13 m/s
h= Vy*t + g*t²/2
clearing t:
tfall= 1.78 sec (b)
x= Vx * tfall
x= 32.52 m (a)
The linear speed of the ladybug is 4.1 m/s
Explanation:
First of all, we need to find the angular speed of the lady bug. This is given by:

where
T is the period of revolution
The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:
T = 1 s
Therefore, the angular speed is

Now we can find the linear speed of the ladybug, which is given by

where:
is the angular speed
r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation
Substituting, we find

Learn more about angular speed:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly