The work done in lifting the hamburger is equal to the increase in gravitational potential energy of the hamburger, given by

where
m=0.1 kg is the mass of the hamburger
is the gravitational acceleration
is the increase in height of the hamburger
Substituting numbers into the equation, we find

So, the correct answer is
(3) 0.3 J
Like a seesaw, it shows that the forces aren’t equal because if it was the seesaw would stay put
Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Answer:
4 m/s^2
Explanation:
The acceleration is defined as: Δv/Δt (the difference of the velocity over a time period in which happens that difference).
Remember that a difference is calculated by subtracting the initial value of a physical quantity from its final value.
In our case:
Δv = Vfinal - Vinitial = 36m/s - 0 m/s = 36m/s
Δt = 9s
a = Δv/Δt = 36m/s / 9s = 4m/s^2
Answer:
the mass of the body is 0.02 kg.
Explanation:
Given;
relative density of the oil,
= 0.875
mass of the object in oil,
= 0.013 kg
mass of the object in water,
= 0.012 kg
let the mass of the object in air = 
weight of the oil, 
weight of the water, 
The relative density of the oil is given as;

Therefore, the mass of the body is 0.02 kg.