Answer:
option c
Explanation:
The disadvantage of the radio signal is option c) which is radio waves create electrical interference. The radio-wave interference also called as electromagnetic interference is the phenomena that occurs due to the radio waves. This phenomena affects the electric circuits. The effects includes the electromagnetic induction, conduction or electrostatic coupling.
 
        
             
        
        
        
The unit for power is Watts. the newton is a unit for force. joules for energy and meters for distance
        
             
        
        
        
For the first one 320
second 
1200W
Data
R = 12 Ω ∆V = 120V I =? P =?
Solution:
According to Ohm’s law,
∆V = I R
I = ∆V / R  
= 120 / 12  
= 10 A
Power P = I ∆V  
= 10 x 120  
= 1200 W
Third
∆V = 120 V P = 60 W I =? R =?
Use the formula, P = I ∆V
I = P / ∆V = 60 / 120 = 0.5 A
∆V = I R
R = ∆V / I = 120 / 0.5 = 240 Ω
 
        
             
        
        
        
Answer:
Explanation:
Using the atomic mass of pluonium atoms (244 g/mol), you can calculate the number of atoms in 47.0 g. Then, knowing that each plutonium atom has 96 protons, you calculate the number of protons in the 47.0 g sample. Finally, using the positive charge of one proton, you calculate the total positive charge in the 47.0 g of plutonium.
<u>1. Number of atoms of plutonium in 47.0 g</u>
- Number of moles = mass / atomic mass = 47.0 g / 244 = 0.1926 moles
- Number of atoms = number of moles × 6.022 × 10²³ atoms/mol 
- Number of atoms = 0.1926 mol × 6.022 × 10²³ atoms/mol = 1.15998×10²³ atoms
<u>2. Number of protons</u>
- Number of protons = 1.15998×10²³ atoms × 96 protons/atom = 1.11385×10²⁵ protons
<u>3. Charge</u>
<u />
- Charge = charge of one proton × number of protons
- Charge = 1.602×10⁻¹⁹ C/proton × 1.11385×10²⁵ protons = 1.78×10⁶C
 
        
             
        
        
        
Answer:
A. Zero
Explanation:
The force on a coil of N turns, enclosing an area, A and carrying a current I in the presence of a magnetic field B, is :
F = N * I * A * B * sinθ
Where θ is the angle between the normal of the enclosed area and the magnetic field. 
Since the normal of the area is parallel to the magnetic field, θ = 0
Hence:
F = NIABsin0
F = 0 or Zero