Answer:
100N
Explanation:
Newton's third law states that whenever an object exerts a force on a second object, it exerts a force of equal magnitude and direction but in the opposite direction on the first. It is often stated as follows: Each action always opposes an equal but opposite reaction.
The subject 1 of 100kg is making a force F, to move an object from 50Kg to 2m / s ^ 2. This Force the object of 50Kg will reflect it in the opposite direction by Newton's third law.
Once the parameter of the force that both are experiencing is clarified, Newton's second law is applied to their respective calculation.

That is the force the boy exert on the man during the shove.
To find work, you use the equation: W = Force X Distance X Cos (0 degrees)
Following the Law of Conservation of Energy, energy cannot be destroyed nor created.
So you would do 75 N x 10m x Cos (0 degrees)= 750 J
Answer:
The other angle is 120°.
Explanation:
Given that,
Angle = 60
Speed = 5.0
We need to calculate the range
Using formula of range
...(I)
The range for the other angle is
....(II)
Here, distance and speed are same
On comparing both range






Hence, The other angle is 120°
Answer:
Concrete
Explanation:
The speed at which sound propagates is medium dependent. As one of the forms of mechanical waves, sound requires a material medium for propagation from place to place.
- Sound travels with the least speed in air because air particles are far apart and they are randomized.
- Sound travels with the greatest speed in solids. Concrete is the only solid material given in the choice.
The speed of sound increases from air to liquid and to solid.
Answer: option c: It orbits beyond the Earth's atmosphere to avoid scattering of light.
Explanation:
Hubble space telescope orbits Earth and sends images of distant objects. The images formed by Hubble are better than the optical telescopes used on land. This is because the Hubble telescope is a space telescope. Light from the distant objects when reaches the land telescopes transmits through atmosphere, where scattering occurs. Some the light rays bounce back. This is avoided by the space telescope Hubble.