Answer:
Approximately
, assuming that the acceleration of this ball is constant during the descent.
Explanation:
Assume that the acceleration of this ball,
, is constant during the entire descent.
Let
denote the displacement of this ball and let
denote the duration of the descent. The SUVAT equation
would apply.
Rearrange this equation to find an expression for the acceleration,
, of this ball:
.
Note that
and
in this question. Thus:
.
Let
denote the mass of this ball. By Newton's Second Law of Motion, if the acceleration of this ball is
, the net external force on this ball would be
.
Since
and
, the net external force on this ball would be:
.
The new pressure P2 is 2.48 atmosphere.
<u>Explanation:</u>
Here, the one of the product of pressure and volume is equal to the products of pressure and volume of other.
By using Boyles's law,
pressure is inversely proportional to volume,
P1 V1 = P2 V2
where P1, V1 represents the first pressure and volume,
P2, V2 represents the second pressure and volume
P2 = (P1 V1) / V2
= (1.75
8.8) / 6.2
P2 = 2.48 atmosphere.
It changes because force is somewhat like pressure. Force is continuously against the object so as a result, speed changes .
<span>The angular momentum L of a rotating wheel with mass m, radius r, moment of inertia I, angular velocity ω, and velocity v of its outer edge:
</span><span>C) Iω</span>