Answer:
A

B

Explanation:
From the question we are told that
The wavelength is
The angle of first bright fringe is
The order of the fringe considered is n =1
Generally the condition for constructive interference is
=> 
=> 
Converting to cm

Generally the number of grating pre centimeter is mathematically represented as

=> 
=> 
Considering question B
From the question we are told that
The first wavelength is
The second wavelength is
The order of the fringe is 
The grating is 
Generally the slit width is mathematically represented as

=> 
=> 
Generally the condition for constructive interference for the first ray is mathematically represented as
=>
=> ![\theta_1 = sin^{-1} [\frac{ 2 * 650 *10^{-9} }{ 2*10^{-6}}]](https://tex.z-dn.net/?f=%5Ctheta_1%20%3D%20sin%5E%7B-1%7D%20%5B%5Cfrac%7B%202%20%2A%20%20%20650%20%2A10%5E%7B-9%7D%20%7D%7B%202%2A10%5E%7B-6%7D%7D%5D)
=> 
Generally the condition for constructive interference for the second ray is mathematically represented as
=>
=> ![\theta_2 = sin^{-1} [\frac{ 2 * 420 *10^{-9} }{ 2*10^{-6}}]](https://tex.z-dn.net/?f=%5Ctheta_2%20%3D%20sin%5E%7B-1%7D%20%5B%5Cfrac%7B%202%20%2A%20%20%20420%20%2A10%5E%7B-9%7D%20%7D%7B%202%2A10%5E%7B-6%7D%7D%5D)
=> 
Generally the angular separation is mathematically represented as

=> 
=> 
Answer:it takes approximately 148.8 seconds to achieve. The average person in a free-fall will hit the ground going at 9.66 m/s from the top of the Empire State Building.
Explanation:
Answer:
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g
U is the speed = 300m/s
H is the maximum height = 78.4m
g is the acceleration due to gravity = 9.8m/s²
Substitute into the fromula;
R = 300√2(78.4)/9.8
R = 300 √(16)
R = 300*4
R = 1200m
Hence the projectile travelled 1200m before hitting the ground
It means that if you had a cubic meter of water it would weigh 1000 kilograms
Answer:
speed of plane in still air = 1060 km/h
speed of wind = 170 km/h
Explanation:
Let teh speed of plane in still air is vp and the speed of air is va.
Irt travels 2670 km in 3 hours against the wind
So,
vp - va = 2670 / 3 = 890 km/h ..... (1)
It travels 11070 km in 9 hours along the wind.
vp + va = 11070 / 9 = 1230 km/h .... (2)
Adding both the equations
2 vp = 2120
vp = 1060 km/h
and va = 1230 - vp = 1230 - 1060 = 170 km/h