Answer:
You would have to find the friction force of the rubber block which would be found with the equation of Normal force (mass*gravity) times cooeficient of friction which would give 8.82 N for the amount of friction and because you need more force than 8.82 N (assuming gravity is 9.8)
.........,....,,,???........
<span>Answer:
Therefore, x component: Tcos(24°) - f = 0 y component: N + Tsin(24°) - mg = 0 The two equations I get from this are: f = Tcos(24°) N = mg - Tsin(24°) In order for the crate to move, the friction force has to be greater than the normal force multiplied by the static coefficient, so... Tcos(24°) = 0.47 * (mg - Tsin(24°)) From all that I can get the equation I need for the tension, which, after some algebraic manipulation, yields: T = (mg * static coefficient) / (cos(24°) + sin(24°) * static coefficient) Then plugging in the values... T = 283.52.
Reference https://www.physicsforums.com/threads/difficulty-with-force-problems-involving-friction.111768/</span>
Answer:
Because it's wattage is 500W.
Explanation:
This is its mearurement