Answer:
The time constant is 
Explanation:
From the question we are told that
the time take to charge is 
The mathematically representation for voltage potential of a capacitor at different time is

Where
is the time constant
is the potential of the capacitor when it is full
So the capacitor potential will be 100% when it is full thus
100% = 1
and from the question we are told that the at the given time the potential of the capacitor is 85% = 0.85 of its final potential so
V = 0.85
Hence



For this case we have that by definition, the kinetic energy is given by the following formula:

Where:
m: It is the mass
v: It is the velocity
According to the data we have to:

Substituting the values we have:

finally, the kinetic energy is 
Answer:
Option A
Answer:

Explanation:
As in any sample you will have 75.8% of Cl-35 iosotopes and 24.3% of Cl-37 iosotopes you can get the average atomic mass as:

Answer:
So the conclusion is that in presence of air net force acting downward reduces for feather and hence falls slower than coin. But in absence of air resistance, net downward force is just equal to force due to gravity which is same for both coin and feather and hence they fall down at the same rate.
Answer:
Step down transformers are used in power adaptors and rectifiers to efficiently decrease the voltage. They are also used in electronic SMPS.
Explanation:
pls mark me as brainlist
Thanks a lot